» Articles » PMID: 24729974

Noncoding RNAs: Emerging Players in Muscular Dystrophies

Overview
Journal Biomed Res Int
Publisher Wiley
Date 2014 Apr 15
PMID 24729974
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

The fascinating world of noncoding RNAs has recently come to light, thanks to the development of powerful sequencing technologies, revealing a variety of RNA molecules playing important regulatory functions in most, if not all, cellular processes. Many noncoding RNAs have been implicated in regulatory networks that are determinant for skeletal muscle differentiation and disease. In this review, we outline the noncoding RNAs involved in physiological mechanisms of myogenesis and those that appear dysregulated in muscle dystrophies, also discussing their potential use as disease biomarkers and therapeutic targets.

Citing Articles

Systematic identification of aberrant non-coding RNAs and their mediated modules in rotator cuff tears.

Zhang Y, Chen J, He S, Xiao Y, Liu A, Zhang D Front Mol Biosci. 2022; 9:940290.

PMID: 36111133 PMC: 9470226. DOI: 10.3389/fmolb.2022.940290.


Molecular Therapies for Myotonic Dystrophy Type 1: From Small Drugs to Gene Editing.

Izzo M, Battistini J, Provenzano C, Martelli F, Cardinali B, Falcone G Int J Mol Sci. 2022; 23(9).

PMID: 35563013 PMC: 9101876. DOI: 10.3390/ijms23094622.


Time-controlled and muscle-specific CRISPR/Cas9-mediated deletion of CTG-repeat expansion in the gene.

Cardinali B, Provenzano C, Izzo M, Voellenkle C, Battistini J, Strimpakos G Mol Ther Nucleic Acids. 2022; 27:184-199.

PMID: 34976437 PMC: 8693309. DOI: 10.1016/j.omtn.2021.11.024.


Regulatory Potential of Competing Endogenous RNAs in Myotonic Dystrophies.

Koscianska E, Kozlowska E, Fiszer A Int J Mol Sci. 2021; 22(11).

PMID: 34200099 PMC: 8201210. DOI: 10.3390/ijms22116089.


Dissecting the transcriptome in cardiovascular disease.

Robinson E, Baker A, Brittan M, McCracken I, Condorelli G, Emanueli C Cardiovasc Res. 2021; 118(4):1004-1019.

PMID: 33757121 PMC: 8930073. DOI: 10.1093/cvr/cvab117.


References
1.
Mousavi K, Zare H, DellOrso S, Grontved L, Gutierrez-Cruz G, Derfoul A . eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell. 2013; 51(5):606-17. PMC: 3786356. DOI: 10.1016/j.molcel.2013.07.022. View

2.
Dmitriev P, Stankevicins L, Ansseau E, Petrov A, Barat A, Dessen P . Defective regulation of microRNA target genes in myoblasts from facioscapulohumeral dystrophy patients. J Biol Chem. 2013; 288(49):34989-5002. PMC: 3853252. DOI: 10.1074/jbc.M113.504522. View

3.
Van Rooij E, Quiat D, Johnson B, Sutherland L, Qi X, Richardson J . A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009; 17(5):662-73. PMC: 2796371. DOI: 10.1016/j.devcel.2009.10.013. View

4.
Pasquinelli A . MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012; 13(4):271-82. DOI: 10.1038/nrg3162. View

5.
Wang K, Chang H . Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011; 43(6):904-14. PMC: 3199020. DOI: 10.1016/j.molcel.2011.08.018. View