» Articles » PMID: 24704842

Comparative Genomics of Aeschynomene Symbionts: Insights into the Ecological Lifestyle of Nod-independent Photosynthetic Bradyrhizobia

Overview
Journal Genes (Basel)
Publisher MDPI
Date 2014 Apr 8
PMID 24704842
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Tropical aquatic species of the legume genus Aeschynomene are stem- and root-nodulated by bradyrhizobia strains that exhibit atypical features such as photosynthetic capacities or the use of a nod gene-dependent (ND) or a nod gene-independent (NI) pathway to enter into symbiosis with legumes. In this study we used a comparative genomics approach on nine Aeschynomene symbionts representative of their phylogenetic diversity. We produced draft genomes of bradyrhizobial strains representing different phenotypes: five NI photosynthetic strains (STM3809, ORS375, STM3847, STM4509 and STM4523) in addition to the previously sequenced ORS278 and BTAi1 genomes, one photosynthetic strain ORS285 hosting both ND and NI symbiotic systems, and one NI non-photosynthetic strain (STM3843). Comparative genomics allowed us to infer the core, pan and dispensable genomes of Aeschynomene bradyrhizobia, and to detect specific genes and their location in Genomic Islands (GI). Specific gene sets linked to photosynthetic and NI/ND abilities were identified, and are currently being studied in functional analyses.

Citing Articles

Closed genomes of commercial inoculant rhizobia provide a blueprint for management of legume inoculation.

Kohlmeier M, OHara G, Ramsay J, Terpolilli J Appl Environ Microbiol. 2025; 91(2):e0221324.

PMID: 39791879 PMC: 11837538. DOI: 10.1128/aem.02213-24.


Photomorphogenesis of Myxococcus macrosporus: new insights for light-regulation of cell development.

Graniczkowska K, Bizhga D, Noda M, Leon V, Saraf N, Feliz D Photochem Photobiol Sci. 2024; 23(10):1857-1870.

PMID: 39298056 PMC: 11832031. DOI: 10.1007/s43630-024-00635-1.


Permanent draft genome sequence of strain ISRA 400, an elite nitrogen-fixing bacterium, isolated from the groundnut growing area in Senegal.

Niang D, Gueddou A, Niang N, Nzepang D, Sambou A, Diouf A J Genomics. 2023; 11:52-57.

PMID: 37915957 PMC: 10615618. DOI: 10.7150/jgen.88302.


Complex evolutionary history of photosynthesis in .

Avontuur J, Wilken P, Palmer M, Coetzee M, Stepkowski T, Venter S Microb Genom. 2023; 9(9).

PMID: 37676703 PMC: 10569730. DOI: 10.1099/mgen.0.001105.


Microevolution, speciation and macroevolution in rhizobia: Genomic mechanisms and selective patterns.

Provorov N, Andronov E, Kimeklis A, Onishchuk O, Igolkina A, Karasev E Front Plant Sci. 2022; 13:1026943.

PMID: 36388581 PMC: 9640933. DOI: 10.3389/fpls.2022.1026943.


References
1.
Jeck W, Reinhardt J, Baltrus D, Hickenbotham M, Magrini V, Mardis E . Extending assembly of short DNA sequences to handle error. Bioinformatics. 2007; 23(21):2942-4. DOI: 10.1093/bioinformatics/btm451. View

2.
Jaubert M, Zappa S, Fardoux J, Adriano J, Hannibal L, Elsen S . Light and redox control of photosynthesis gene expression in Bradyrhizobium: dual roles of two PpsR. J Biol Chem. 2004; 279(43):44407-16. DOI: 10.1074/jbc.M408039200. View

3.
Sudtachat N, Ito N, Itakura M, Masuda S, Eda S, Mitsui H . Aerobic vanillate degradation and C1 compound metabolism in Bradyrhizobium japonicum. Appl Environ Microbiol. 2009; 75(15):5012-7. PMC: 2725485. DOI: 10.1128/AEM.00755-09. View

4.
Oda Y, Larimer F, Chain P, Malfatti S, Shin M, Vergez L . Multiple genome sequences reveal adaptations of a phototrophic bacterium to sediment microenvironments. Proc Natl Acad Sci U S A. 2008; 105(47):18543-8. PMC: 2587559. DOI: 10.1073/pnas.0809160105. View

5.
Gil R, Silva F, Pereto J, Moya A . Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev. 2004; 68(3):518-37, table of contents. PMC: 515251. DOI: 10.1128/MMBR.68.3.518-537.2004. View