» Articles » PMID: 24670990

Conversion of a Rhizopus Chinensis Lipase into an Esterase by Lid Swapping

Overview
Journal J Lipid Res
Publisher Elsevier
Specialty Biochemistry
Date 2014 Mar 28
PMID 24670990
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

In an effort to explore the feasibility of converting a lipase into an esterase by modifying the lid region, we designed and characterized two novel Rhizopus chinensis lipase variants by lid swapping. The substrate specificity of an R. chinensis lipase was successfully modified toward water-soluble substrates, that is, turned into an esterase, by replacing the hydrophobic lid with a hydrophilic lid from ferulic acid esterase from Aspergillus niger Meanwhile, as a comparison, the lid of R. chinensis lipase was replaced by a hydrophobic lid from Rhizomucor miehei lipase, which did not alter its substrate specificity but led to a 5.4-fold higher catalytic efficiency (k*cat/K*m) toward p-nitrophenyl laurate. Based on the analysis of structure-function relationships, it suggests that the amphipathic nature of the lid is very important for the substrate specificity. This study provides new insight into the structural basis of lipase specificities and a way to tune the substrate preference of lipases.

Citing Articles

Prospective identification of extracellular triacylglycerol hydrolase with conserved amino acids in 's high G+C genomic dataset.

Sraphet S, Javadi B Biotechnol Rep (Amst). 2025; 45:e00869.

PMID: 39758972 PMC: 11697127. DOI: 10.1016/j.btre.2024.e00869.


Enhancing the Hydrolytic Activity of a Lipase towards Larger Triglycerides through Lid Domain Engineering.

Fernandez-Lopez L, Roda S, Robles-Martin A, Munoz-Tafalla R, Almendral D, Ferrer M Int J Mol Sci. 2023; 24(18).

PMID: 37762071 PMC: 10530837. DOI: 10.3390/ijms241813768.


N-terminal lid swapping contributes to the substrate specificity and activity of thermophilic lipase TrLipE.

Fang Y, Liu F, Shi Y, Yang T, Xin Y, Gu Z Front Microbiol. 2023; 14:1193955.

PMID: 37434709 PMC: 10332459. DOI: 10.3389/fmicb.2023.1193955.


Tuning Selectivity in CalA Lipase: Beyond Tunnel Engineering.

Alejaldre L, Lemay-St-Denis C, Pelletier J, Quaglia D Biochemistry. 2022; 62(2):396-409.

PMID: 36580299 PMC: 9851156. DOI: 10.1021/acs.biochem.2c00513.


Characterization of an for Efficient Fatty Acid Ethyl Ester Synthesis in Aqueous Phase and the Molecular Mechanism.

Xu Y, Huang H, Lu H, Wu M, Lin M, Zhang C Front Microbiol. 2022; 12:820380.

PMID: 35265050 PMC: 8899536. DOI: 10.3389/fmicb.2021.820380.


References
1.
Jaeger K, Eggert T . Lipases for biotechnology. Curr Opin Biotechnol. 2002; 13(4):390-7. DOI: 10.1016/s0958-1669(02)00341-5. View

2.
Ge L, Rudolph P . Simultaneous introduction of multiple mutations using overlap extension PCR. Biotechniques. 1997; 22(1):28-30. DOI: 10.2144/97221bm03. View

3.
Chahinian H, Sarda L . Distinction between esterases and lipases: comparative biochemical properties of sequence-related carboxylesterases. Protein Pept Lett. 2009; 16(10):1149-61. DOI: 10.2174/092986609789071333. View

4.
Han Z, Han S, Zheng S, Lin Y . Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface. Appl Microbiol Biotechnol. 2009; 85(1):117-26. DOI: 10.1007/s00253-009-2067-8. View

5.
Qian Z, Lutz S . Improving the catalytic activity of Candida antarctica lipase B by circular permutation. J Am Chem Soc. 2005; 127(39):13466-7. DOI: 10.1021/ja053932h. View