Electrically Facilitated Translocation of Protein Through Solid Nanopore
Overview
Affiliations
Nanopores have been proven as versatile single-molecule sensors for individual unlabeled biopolymer detection and characterization. In the present work, a relative large nanopore with a diameter of about 60 nm has been used to detect protein translocation driven by a series of applied voltages. Compared with previous studied small nanopores, a distinct profile of protein translocation through a larger nanopore has been characterized. First, a higher threshold voltage is required to drive proteins into the large nanopore. With the increase of voltages, the capture frequency of protein into the nanopore has been markedly enhanced. And the distribution of current blockage events is characterized as a function of biased voltages. Due to the large dimension of the nanopore, the adsorption and desorption phenomenon of proteins observed with a prolonged dwell time has been weakened in our work. Nevertheless, the protein can still be stretched into an unfolded state by increased electric forces at high voltages. In consideration of the high throughput of the large nanopore, a couple of proteins passing through the nanopore simultaneously occur at high voltage. As a new feature, the feasibility and specificity of a nanopore with distinct geometry have been demonstrated for sensing protein translocation, which broadly expand the application of nanopore devices.
Bhatti H, Jawed R, Ali I, Iqbal K, Han Y, Lu Z RSC Adv. 2022; 11(46):28996-29014.
PMID: 35478559 PMC: 9038099. DOI: 10.1039/d1ra02364k.
Slowing down DNA translocation through solid-state nanopores by edge-field leakage.
Wang C, Sensale S, Pan Z, Senapati S, Chang H Nat Commun. 2021; 12(1):140.
PMID: 33420061 PMC: 7794543. DOI: 10.1038/s41467-020-20409-4.
Sensale S, Wang C, Chang H J Chem Phys. 2020; 153(3):035102.
PMID: 32716192 PMC: 7367690. DOI: 10.1063/5.0013195.
Application of Solid-State Nanopore in Protein Detection.
Luo Y, Wu L, Tu J, Lu Z Int J Mol Sci. 2020; 21(8).
PMID: 32316558 PMC: 7215903. DOI: 10.3390/ijms21082808.
Varongchayakul N, Huttner D, Grinstaff M, Meller A Sci Rep. 2018; 8(1):1017.
PMID: 29343861 PMC: 5772516. DOI: 10.1038/s41598-018-19332-y.