» Articles » PMID: 24598792

Lateral Optical Force on Chiral Particles Near a Surface

Overview
Journal Nat Commun
Specialty Biology
Date 2014 Mar 7
PMID 24598792
Citations 50
Authors
Affiliations
Soon will be listed here.
Abstract

Light can exert radiation pressure on any object it encounters and that resulting optical force can be used to manipulate particles. It is commonly assumed that light should move a particle forward and indeed an incident plane wave with a photon momentum ħk can only push any particle, independent of its properties, in the direction of k. Here we demonstrate, using full-wave simulations, that an anomalous lateral force can be induced in a direction perpendicular to that of the incident photon momentum if a chiral particle is placed above a substrate that does not break any left-right symmetry. Analytical theory shows that the lateral force emerges from the coupling between structural chirality (the handedness of the chiral particle) and the light reflected from the substrate surface. Such coupling induces a sideway force that pushes chiral particles with opposite handedness in opposite directions.

Citing Articles

Optical sorting: past, present and future.

Yang M, Shi Y, Song Q, Wei Z, Dun X, Wang Z Light Sci Appl. 2025; 14(1):103.

PMID: 40011460 PMC: 11865320. DOI: 10.1038/s41377-024-01734-5.


Subwavelength-scale off-axis optical nanomanipulation within Gaussian-beam traps.

Zhou L, Sun W, Tao Z, Xiong N, Huang C, Jiang X Nanophotonics. 2025; 14(2):219-228.

PMID: 39927206 PMC: 11806509. DOI: 10.1515/nanoph-2024-0527.


Transverse optical gradient force in untethered rotating metaspinners.

Engay E, Shanei M, Mylnikov V, Wang G, Johansson P, Volpe G Light Sci Appl. 2025; 14(1):38.

PMID: 39774701 PMC: 11706995. DOI: 10.1038/s41377-024-01720-x.


Longitudinal chiral forces in photonic integrated waveguides to separate particles with realistically small chirality.

Martinez-Romeu J, Diez I, Golat S, Rodriguez-Fortuno F, Martinez A Nanophotonics. 2024; 13(23):4275-4289.

PMID: 39678109 PMC: 11636476. DOI: 10.1515/nanoph-2024-0339.


The perspectives of broadband metasurfaces and photo-electric tweezer applications.

Lee G, Yu E, Ryu Y, Seo M Nanophotonics. 2024; 11(9):1783-1808.

PMID: 39633930 PMC: 11501245. DOI: 10.1515/nanoph-2021-0711.


References
1.
Nieto-Vesperinas M, Saenz J, Gomez-Medina R, Chantada L . Optical forces on small magnetodielectric particles. Opt Express. 2010; 18(11):11428-43. DOI: 10.1364/OE.18.011428. View

2.
Shitrit N, Yulevich I, Maguid E, Ozeri D, Veksler D, Kleiner V . Spin-optical metamaterial route to spin-controlled photonics. Science. 2013; 340(6133):724-6. DOI: 10.1126/science.1234892. View

3.
Rechtsman M, Zeuner J, Plotnik Y, Lumer Y, Podolsky D, Dreisow F . Photonic Floquet topological insulators. Nature. 2013; 496(7444):196-200. DOI: 10.1038/nature12066. View

4.
Spivak B, Andreev A . Photoinduced separation of chiral isomers in a classical buffer gas. Phys Rev Lett. 2009; 102(6):063004. DOI: 10.1103/PhysRevLett.102.063004. View

5.
Wu C, Li H, Wei Z, Yu X, Chan C . Theory and experimental realization of negative refraction in a metallic helix array. Phys Rev Lett. 2011; 105(24):247401. DOI: 10.1103/PhysRevLett.105.247401. View