» Articles » PMID: 24586151

Mycobacterium Tuberculosis Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress During Infection

Abstract

Mycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited. Understanding how the bacillus extracts and incorporates nutrients from its host may help develop novel strategies to combat tuberculosis. Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release. While the role of AnsP2 is partially spared by yet to be identified transporter(s), that of AnsA is crucial in both phagosome acidification arrest and intracellular replication, as an M. tuberculosis mutant lacking this asparaginase is ultimately attenuated in macrophages and in mice. Our study provides yet another example of the intimate link between physiology and virulence in the tubercle bacillus, and identifies a novel pathway to be targeted for therapeutic purposes.

Citing Articles

Microbial metabolism disrupts cytokine activity to impact host immune response.

Marshall E, Nunes C, Burbaud S, Vincent C, Munroe N, Simoes da Silva C Proc Natl Acad Sci U S A. 2024; 121(46):e2405719121.

PMID: 39514319 PMC: 11573640. DOI: 10.1073/pnas.2405719121.


Characterization of Glutaminase-Free Asparaginase (MSMEG_3173).

Correa P, Schwarz M, Antunes D, Pinero S, Castro Silva M, Mangabeira Crescencio M ACS Omega. 2024; 9(38):40214-40225.

PMID: 39346838 PMC: 11425952. DOI: 10.1021/acsomega.4c06459.


Aspergillus fumigatus conidial surface-associated proteome reveals factors for fungal evasion and host immunity modulation.

Pinzan C, Valero C, de Castro P, Silva J, Earle K, Liu H Nat Microbiol. 2024; 9(10):2710-2726.

PMID: 39191887 PMC: 11699518. DOI: 10.1038/s41564-024-01782-y.


Roles of Critical Amino Acids Metabolism in The Interactions Between Intracellular Bacterial Infection and Macrophage Function.

Zhang Z, Wang Y, Xia L, Zhang Y Curr Microbiol. 2024; 81(9):280.

PMID: 39031203 DOI: 10.1007/s00284-024-03801-x.


Amino Acid Biosynthesis Inhibitors in Tuberculosis Drug Discovery.

Guida M, Tammaro C, Quaranta M, Salvucci B, Biava M, Poce G Pharmaceutics. 2024; 16(6).

PMID: 38931847 PMC: 11206623. DOI: 10.3390/pharmaceutics16060725.


References
1.
Bottai D, Majlessi L, Simeone R, Frigui W, Laurent C, Lenormand P . ESAT-6 secretion-independent impact of ESX-1 genes espF and espG1 on virulence of Mycobacterium tuberculosis. J Infect Dis. 2011; 203(8):1155-64. DOI: 10.1093/infdis/jiq089. View

2.
Scotti C, Sommi P, Pasquetto M, Cappelletti D, Stivala S, Mignosi P . Cell-cycle inhibition by Helicobacter pylori L-asparaginase. PLoS One. 2010; 5(11):e13892. PMC: 2976697. DOI: 10.1371/journal.pone.0013892. View

3.
Harper C, Hayward D, Wiid I, van Helden P . Regulation of nitrogen metabolism in Mycobacterium tuberculosis: a comparison with mechanisms in Corynebacterium glutamicum and Streptomyces coelicolor. IUBMB Life. 2008; 60(10):643-50. DOI: 10.1002/iub.100. View

4.
van Kessel J, Hatfull G . Recombineering in Mycobacterium tuberculosis. Nat Methods. 2006; 4(2):147-52. DOI: 10.1038/nmeth996. View

5.
Kullas A, McClelland M, Yang H, Tam J, Torres A, Porwollik S . L-asparaginase II produced by Salmonella typhimurium inhibits T cell responses and mediates virulence. Cell Host Microbe. 2012; 12(6):791-8. PMC: 4361029. DOI: 10.1016/j.chom.2012.10.018. View