» Articles » PMID: 24563857

The Proteasome and the Degradation of Oxidized Proteins: Part III-Redox Regulation of the Proteasomal System

Overview
Journal Redox Biol
Date 2014 Feb 25
PMID 24563857
Citations 78
Authors
Affiliations
Soon will be listed here.
Abstract

Here, we review shortly the current knowledge on the regulation of the proteasomal system during and after oxidative stress. After addressing the components of the proteasomal system and the degradation of oxidatively damaged proteins in part I and II of this series, we address here which changes in activity undergo the proteasome and the ubiquitin-proteasomal system itself under oxidative conditions. While several components of the proteasomal system undergo direct oxidative modification, a number of redox-regulated events are modulating the proteasomal activity in a way it can address the major tasks in an oxidative stress situation: the removal of oxidized proteins and the adaptation of the cellular metabolism to the stress situation.

Citing Articles

Non-enzymatic posttranslational protein modifications in protein aggregation and neurodegenerative diseases.

Baldensperger T, Preissler M, Becker C RSC Chem Biol. 2024; 6(2):129-149.

PMID: 39722676 PMC: 11667106. DOI: 10.1039/d4cb00221k.


DDI2 protease controls embryonic development and inflammation via TCF11/NRF1.

Nedomova M, Haberecht-Muller S, Moller S, Venz S, Prochazkova M, Prochazka J iScience. 2024; 27(10):110893.

PMID: 39328932 PMC: 11424978. DOI: 10.1016/j.isci.2024.110893.


High methionine diet mediated oxidative stress and proteasome impairment causes toxicity in liver.

Derouiche F, Djemil R, Sebihi F, Douaouya L, Maamar H, Benjemana K Sci Rep. 2024; 14(1):5555.

PMID: 38448604 PMC: 10917754. DOI: 10.1038/s41598-024-55857-1.


Systematic identification of 20S proteasome substrates.

Pepelnjak M, Rogawski R, Arkind G, Leushkin Y, Fainer I, Ben-Nissan G Mol Syst Biol. 2024; 20(4):403-427.

PMID: 38287148 PMC: 10987551. DOI: 10.1038/s44320-024-00015-y.


Acceleration of Protein Degradation by 20S Proteasome-Binding Peptides Generated by In Vitro Artificial Evolution.

Zhu Y, Shigeyoshi K, Hayakawa Y, Fujiwara S, Kishida M, Ohki H Int J Mol Sci. 2023; 24(24).

PMID: 38139315 PMC: 10743564. DOI: 10.3390/ijms242417486.


References
1.
Jung T, Grune T . The proteasome and the degradation of oxidized proteins: Part I-structure of proteasomes. Redox Biol. 2013; 1:178-82. PMC: 3757679. DOI: 10.1016/j.redox.2013.01.004. View

2.
Catalgol B, Wendt B, Grimm S, Breusing N, Ozer N, Grune T . Chromatin repair after oxidative stress: role of PARP-mediated proteasome activation. Free Radic Biol Med. 2009; 48(5):673-80. DOI: 10.1016/j.freeradbiomed.2009.12.010. View

3.
Schmidt A, Yan S, Yan S, STERN D . The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest. 2001; 108(7):949-55. PMC: 200958. DOI: 10.1172/JCI14002. View

4.
Queisser M, Yao D, Geisler S, Hammes H, Lochnit G, Schleicher E . Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes. 2009; 59(3):670-8. PMC: 2828656. DOI: 10.2337/db08-1565. View

5.
Ferrington D, Kapphahn R . Catalytic site-specific inhibition of the 20S proteasome by 4-hydroxynonenal. FEBS Lett. 2004; 578(3):217-23. DOI: 10.1016/j.febslet.2004.11.003. View