» Articles » PMID: 24515974

Growth Promotion of the Opportunistic Human Pathogen, Staphylococcus Lugdunensis, by Heme, Hemoglobin, and Coculture with Staphylococcus Aureus

Overview
Specialty Microbiology
Date 2014 Feb 12
PMID 24515974
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Staphylococcus lugdunensis is both a commensal of humans and an opportunistic pathogen. Little is currently known about the molecular mechanisms underpinning the virulence of this bacterium. Here, we demonstrate that in contrast to S. aureus, S. lugdunensis makes neither staphyloferrin A (SA) nor staphyloferrin B (SB) in response to iron deprivation, owing to the absence of the SB gene cluster, and a large deletion in the SA biosynthetic gene cluster. As a result, the species grows poorly in serum-containing media, and this defect was complemented by introduction of the S. aureus SA gene cluster into S. lugdunensis. S. lugdunensis expresses the HtsABC and SirABC transporters for SA and SB, respectively; the latter gene set is found within the isd (heme acquisition) gene cluster. An isd deletion strain was significantly debilitated for iron acquisition from both heme and hemoglobin, and was also incapable of utilizing ferric-SB as an iron source, while an hts mutant could not grow on ferric-SA as an iron source. In iron-restricted coculture experiments, S. aureus significantly enhanced the growth of S. lugdunensis, in a manner dependent on staphyloferrin production by S. aureus, and the expression of the cognate transporters by S. lugdunensis.

Citing Articles

The Staphylococcus aureus-antagonizing human nasal commensal Staphylococcus lugdunensis depends on siderophore piracy.

Rosenstein R, Torres Salazar B, Sauer C, Heilbronner S, Krismer B, Peschel A Microbiome. 2024; 12(1):213.

PMID: 39438987 PMC: 11495082. DOI: 10.1186/s40168-024-01913-x.


Nasal commensals reduce Staphylococcus aureus proliferation by restricting siderophore availability.

Zhao Y, Bitzer A, Power J, Belikova D, Torres Salazar B, Adolf L ISME J. 2024; 18(1).

PMID: 38987933 PMC: 11296517. DOI: 10.1093/ismejo/wrae123.


The upper respiratory tract microbiota of healthy adults is affected by Streptococcus pneumoniae carriage, smoking habits, and contact with children.

Paulo A, Lanca J, Almeida S, Hilty M, Sa-Leao R Microbiome. 2023; 11(1):199.

PMID: 37658443 PMC: 10474643. DOI: 10.1186/s40168-023-01640-9.


Nutritional Interactions between Bacterial Species Colonising the Human Nasal Cavity: Current Knowledge and Future Prospects.

Adolf L, Heilbronner S Metabolites. 2022; 12(6).

PMID: 35736422 PMC: 9229137. DOI: 10.3390/metabo12060489.


In vivo growth of Staphylococcus lugdunensis is facilitated by the concerted function of heme and non-heme iron acquisition mechanisms.

Flannagan R, Brozyna J, Kumar B, Adolf L, Power J, Heilbronner S J Biol Chem. 2022; 298(5):101823.

PMID: 35283192 PMC: 9052147. DOI: 10.1016/j.jbc.2022.101823.


References
1.
Hood M, Skaar E . Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol. 2012; 10(8):525-37. PMC: 3875331. DOI: 10.1038/nrmicro2836. View

2.
Meiwes J, FIEDLER H, Haag H, Zahner H, Jung G . Isolation and characterization of staphyloferrin A, a compound with siderophore activity from Staphylococcus hyicus DSM 20459. FEMS Microbiol Lett. 1990; 55(1-2):201-5. DOI: 10.1111/j.1574-6968.1990.tb13863.x. View

3.
Mazmanian S, Ton-That H, Su K, Schneewind O . An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc Natl Acad Sci U S A. 2002; 99(4):2293-8. PMC: 122358. DOI: 10.1073/pnas.032523999. View

4.
Bieber L, Kahlmeter G . Staphylococcus lugdunensis in several niches of the normal skin flora. Clin Microbiol Infect. 2009; 16(4):385-8. DOI: 10.1111/j.1469-0691.2009.02813.x. View

5.
Bocher S, Tonning B, Skov R, Prag J . Staphylococcus lugdunensis, a common cause of skin and soft tissue infections in the community. J Clin Microbiol. 2009; 47(4):946-50. PMC: 2668335. DOI: 10.1128/JCM.01024-08. View