» Articles » PMID: 24501126

GAP, an Aequorin-based Fluorescent Indicator for Imaging Ca2+ in Organelles

Overview
Specialty Science
Date 2014 Feb 7
PMID 24501126
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Genetically encoded calcium indicators allow monitoring subcellular Ca(2+) signals inside organelles. Most genetically encoded calcium indicators are fusions of endogenous calcium-binding proteins whose functionality in vivo may be perturbed by competition with cellular partners. We describe here a novel family of fluorescent Ca(2+) sensors based on the fusion of two Aequorea victoria proteins, GFP and apo-aequorin (GAP). GAP exhibited a unique combination of features: dual-excitation ratiometric imaging, high dynamic range, good signal-to-noise ratio, insensitivity to pH and Mg(2+), tunable Ca(2+) affinity, uncomplicated calibration, and targetability to five distinct organelles. Moreover, transgenic mice for endoplasmic reticulum-targeted GAP exhibited a robust long-term expression that correlated well with its reproducible performance in various neural tissues. This biosensor fills a gap in the actual repertoire of Ca(2+) indicators for organelles and becomes a valuable tool for in vivo Ca(2+) imaging applications.

Citing Articles

Robust p53 phenotypes and prospective downstream targets in telomerase-immortalized human cells.

Miciak J, Petrova L, Sajwan R, Pandya A, Deckard M, Munoz A Oncotarget. 2025; 16:79-100.

PMID: 39969205 PMC: 11837864. DOI: 10.18632/oncotarget.28690.


Monitoring ER Ca by Luminescence with Low Affinity GFP-Aequorin Protein (GAP).

Rodriguez-Prados M, Rojo-Ruiz J, Calvo B, Garcia-Sancho J, Alonso M Methods Mol Biol. 2024; 2861:141-153.

PMID: 39395103 DOI: 10.1007/978-1-0716-4164-4_11.


Opticool: Cutting-edge transgenic optical tools.

Fenelon K, Krause J, Koromila T PLoS Genet. 2024; 20(3):e1011208.

PMID: 38517915 PMC: 10959397. DOI: 10.1371/journal.pgen.1011208.


TRPV1 Channels Are New Players in the Reticulum-Mitochondria Ca Coupling in a Rat Cardiomyoblast Cell Line.

Tessier N, Ducrozet M, Dia M, Badawi S, Chouabe C, Crola Da Silva C Cells. 2023; 12(18).

PMID: 37759544 PMC: 10529771. DOI: 10.3390/cells12182322.


The evolution of organellar calcium mapping technologies.

Zajac M, Modi S, Krishnan Y Cell Calcium. 2022; 108:102658.

PMID: 36274564 PMC: 10224794. DOI: 10.1016/j.ceca.2022.102658.


References
1.
Chamero P, Manjarres I, Garcia-Verdugo J, Villalobos C, Alonso M, Garcia-Sancho J . Nuclear calcium signaling by inositol trisphosphate in GH3 pituitary cells. Cell Calcium. 2007; 43(2):205-14. DOI: 10.1016/j.ceca.2007.05.005. View

2.
Alonso M, Garcia-Sancho J . Nuclear Ca(2+) signalling. Cell Calcium. 2010; 49(5):280-9. DOI: 10.1016/j.ceca.2010.11.004. View

3.
Kendall J, Dormer R, Campbell A . Targeting aequorin to the endoplasmic reticulum of living cells. Biochem Biophys Res Commun. 1992; 189(2):1008-16. DOI: 10.1016/0006-291x(92)92304-g. View

4.
Crameri A, Whitehorn E, Tate E, Stemmer W . Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol. 1996; 14(3):315-9. DOI: 10.1038/nbt0396-315. View

5.
Tian L, Hires S, Mao T, Huber D, Chiappe M, Chalasani S . Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods. 2009; 6(12):875-81. PMC: 2858873. DOI: 10.1038/nmeth.1398. View