» Articles » PMID: 24489869

Supported Palladium Nanoparticles Synthesized by Living Plants As a Catalyst for Suzuki-Miyaura Reactions

Overview
Journal PLoS One
Date 2014 Feb 4
PMID 24489869
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The metal accumulating ability of plants has previously been used to capture metal contaminants from the environment; however, the full potential of this process is yet to be realized. Herein, the first use of living plants to recover palladium and produce catalytically active palladium nanoparticles is reported. This process eliminates the necessity for nanoparticle extraction from the plant and reduces the number of production steps compared to traditional catalyst palladium on carbon. These heterogeneous plant catalysts have demonstrated high catalytic activity in Suzuki coupling reactions between phenylboronic acid and a range of aryl halides containing iodo-, bromo- and chloro- moieties.

Citing Articles

Arabidopsis research in 2030: Translating the computable plant.

Brady S, Auge G, Ayalew M, Balasubramanian S, Hamann T, Inze D Plant J. 2025; 121(5):e70047.

PMID: 40028766 PMC: 11874203. DOI: 10.1111/tpj.70047.


Controlling Gold Nanoparticle Synthesis and Size for Catalysis.

Loskarn M, Harumain Z, Dobson J, Hunt A, McElroy C, Klumbys E Environ Sci Technol. 2024; 58(22):9714-9722.

PMID: 38780409 PMC: 11155235. DOI: 10.1021/acs.est.4c00266.


A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles.

Luzala M, Muanga C, Kyana J, Safari J, Zola E, Mbusa G Nanomaterials (Basel). 2022; 12(11).

PMID: 35683697 PMC: 9182092. DOI: 10.3390/nano12111841.


Investigating cyanogen rich efficacy for Ru phytomining and application in catalytic reactions.

Dube S, Matsinha L, Makhubela B, Ambushe A RSC Adv. 2022; 12(2):1165-1176.

PMID: 35425133 PMC: 8978976. DOI: 10.1039/d1ra06647a.


Biotechnological synthesis of Pd-based nanoparticle catalysts.

Egan-Morriss C, Kimber R, Powell N, Lloyd J Nanoscale Adv. 2022; 4(3):654-679.

PMID: 35224444 PMC: 8805459. DOI: 10.1039/d1na00686j.


References
1.
Manceau A, Nagy K, Marcus M, Lanson M, Geoffroy N, Jacquet T . Formation of metallic copper nanoparticles at the soil-root interface. Environ Sci Technol. 2008; 42(5):1766-72. DOI: 10.1021/es072017o. View

2.
Adak L, Chattopadhyay K, Ranu B . Palladium nanoparticle-catalyzed C-N bond formation. A highly regio- and stereoselective allylic amination by allyl acetates. J Org Chem. 2009; 74(10):3982-5. DOI: 10.1021/jo9003037. View

3.
Singaravelu G, Arockiamary J, Ganesh Kumar V, Govindaraju K . A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces. 2007; 57(1):97-101. DOI: 10.1016/j.colsurfb.2007.01.010. View

4.
Joo S, Park J, Tsung C, Yamada Y, Yang P, Somorjai G . Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat Mater. 2008; 8(2):126-31. DOI: 10.1038/nmat2329. View

5.
Sharma N, Sahi S, Nath S, Parsons J, Gardea-Torresdey J, Pal T . Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol. 2007; 41(14):5137-42. PMC: 2518977. DOI: 10.1021/es062929a. View