» Articles » PMID: 24485894

Altered Energy Production, Lowered Antioxidant Potential, and Inflammatory Processes Mediate CNS Damage Associated with Abuse of the Psychostimulants MDMA and Methamphetamine

Overview
Journal Eur J Pharmacol
Specialty Pharmacology
Date 2014 Feb 4
PMID 24485894
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Central nervous system (CNS) damage associated with psychostimulant dependence may be an ongoing, degenerative process with adverse effects on neuropsychiatric function. However, the molecular mechanisms regarding how altered energy regulation affects immune response in the context of substance use disorders are not fully understood. This review summarizes the current evidence regarding the effects of psychostimulant [particularly 3,4-methylenedioxy-N-methylamphetamine (MDMA) and methamphetamine] exposure on brain energy regulation, immune response, and neuropsychiatric function. Importantly, the neuropsychiatric impairments (e.g., cognitive deficits, depression, and anxiety) that persist following abstinence are associated with poorer treatment outcomes - increased relapse rates, lower treatment retention rates, and reduced daily functioning. Qualifying the molecular changes within the CNS according to the exposure and use patterns of specifically abused substances should inform the development of new therapeutic approaches for addiction treatment.

Citing Articles

Exploring amygdala structural changes and signaling pathways in postmortem brains: consequences of long-term methamphetamine addiction.

Azimzadeh Z, Omidvari S, Niknazar S, Vafaei-Nezhad S, Roozbahany N, Abdollahifar M Anat Cell Biol. 2023; 57(1):70-84.

PMID: 37994041 PMC: 10968194. DOI: 10.5115/acb.23.193.


Is Deep Brain Stimulation an Effective Treatment for Psychostimulant Dependency? A Preclinical and Clinical Systematic Review.

Eskandari K, Fattahi M, Yazdanian H, Haghparast A Neurochem Res. 2022; 48(5):1255-1268.

PMID: 36445490 DOI: 10.1007/s11064-022-03818-3.


Association between white matter microstructure and cognitive function in patients with methamphetamine use disorder.

Zhou Y, Hu Y, Wang Q, Yang Z, Li J, Ma Y Hum Brain Mapp. 2022; 44(2):304-314.

PMID: 35838008 PMC: 9842920. DOI: 10.1002/hbm.26020.


Striatal Reinnervation Process after Acute Methamphetamine-Induced Dopaminergic Degeneration in Mice.

Granado N, Ares-Santos S, Tizabi Y, Moratalla R Neurotox Res. 2018; 34(3):627-639.

PMID: 29934756 DOI: 10.1007/s12640-018-9925-z.


Functional connectivity, behavioral and dopaminergic alterations 24 hours following acute exposure to synthetic bath salt drug methylenedioxypyrovalerone.

Colon-Perez L, Pino J, Saha K, Pompilus M, Kaplitz S, Choudhury N Neuropharmacology. 2018; 137:178-193.

PMID: 29729891 PMC: 6397742. DOI: 10.1016/j.neuropharm.2018.04.031.


References
1.
Potula R, Hawkins B, Cenna J, Fan S, Dykstra H, Ramirez S . Methamphetamine causes mitrochondrial oxidative damage in human T lymphocytes leading to functional impairment. J Immunol. 2010; 185(5):2867-76. PMC: 3124898. DOI: 10.4049/jimmunol.0903691. View

2.
Brownlee M, Vlassara H, Cerami A . Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med. 1984; 101(4):527-37. DOI: 10.7326/0003-4819-101-4-527. View

3.
Zuloaga D, Siegel J, Acevedo S, Agam M, Raber J . Developmental methamphetamine exposure results in short- and long-term alterations in hypothalamic-pituitary-adrenal-axis-associated proteins. Dev Neurosci. 2013; 35(4):338-46. PMC: 3845800. DOI: 10.1159/000351278. View

4.
Martinez L, Mihu M, Gacser A, Santambrogio L, Nosanchuk J . Methamphetamine enhances histoplasmosis by immunosuppression of the host. J Infect Dis. 2009; 200(1):131-41. PMC: 11530355. DOI: 10.1086/599328. View

5.
Friend D, Son J, Keefe K, Fricks-Gleason A . Expression and activity of nitric oxide synthase isoforms in methamphetamine-induced striatal dopamine toxicity. J Pharmacol Exp Ther. 2012; 344(2):511-21. PMC: 3558820. DOI: 10.1124/jpet.112.199745. View