» Articles » PMID: 24485098

RNAmotifs: Prediction of Multivalent RNA Motifs That Control Alternative Splicing

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2014 Feb 4
PMID 24485098
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

RNA-binding proteins (RBPs) regulate splicing according to position-dependent principles, which can be exploited for analysis of regulatory motifs. Here we present RNAmotifs, a method that evaluates the sequence around differentially regulated alternative exons to identify clusters of short and degenerate sequences, referred to as multivalent RNA motifs. We show that diverse RBPs share basic positional principles, but differ in their propensity to enhance or repress exon inclusion. We assess exons differentially spliced between brain and heart, identifying known and new regulatory motifs, and predict the expression pattern of RBPs that bind these motifs. RNAmotifs is available at https://bitbucket.org/rogrro/rna_motifs.

Citing Articles

Identification of Significant RNA-Binding Proteins in the Process of CD44 Splicing Using the Boosted Beta Regression Algorithm.

Novosad V Dokl Biochem Biophys. 2023; 510(1):99-103.

PMID: 37582871 DOI: 10.1134/S1607672923700199.


Data Science Issues in Studying Protein-RNA Interactions with CLIP Technologies.

Chakrabarti A, Haberman N, Praznik A, Luscombe N, Ule J Annu Rev Biomed Data Sci. 2023; 1(1):235-261.

PMID: 37123514 PMC: 7614488. DOI: 10.1146/annurev-biodatasci-080917-013525.


Neural Isoforms of Agrin Are Generated by Reduced PTBP1-RNA Interaction Network Spanning the Neuron-Specific Splicing Regions in .

Bushra S, Lin Y, Joudaki A, Ito M, Ohkawara B, Ohno K Int J Mol Sci. 2023; 24(8).

PMID: 37108583 PMC: 10139058. DOI: 10.3390/ijms24087420.


Post-Transcriptional Modification by Alternative Splicing and Pathogenic Splicing Variants in Cardiovascular Development and Congenital Heart Defects.

Mehta Z, Touma M Int J Mol Sci. 2023; 24(2).

PMID: 36675070 PMC: 9862068. DOI: 10.3390/ijms24021555.


MALAT1 modulates alternative splicing by cooperating with the splicing factors PTBP1 and PSF.

Miao H, Wu F, Li Y, Qin C, Zhao Y, Xie M Sci Adv. 2022; 8(51):eabq7289.

PMID: 36563164 PMC: 9788761. DOI: 10.1126/sciadv.abq7289.


References
1.
Sickmier E, Frato K, Shen H, Paranawithana S, Green M, Kielkopf C . Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65. Mol Cell. 2006; 23(1):49-59. PMC: 2043114. DOI: 10.1016/j.molcel.2006.05.025. View

2.
Polydorides A, Okano H, Yang Y, Stefani G, Darnell R . A brain-enriched polypyrimidine tract-binding protein antagonizes the ability of Nova to regulate neuron-specific alternative splicing. Proc Natl Acad Sci U S A. 2000; 97(12):6350-5. PMC: 18606. DOI: 10.1073/pnas.110128397. View

3.
Auweter S, Oberstrass F, Allain F . Sequence-specific binding of single-stranded RNA: is there a code for recognition?. Nucleic Acids Res. 2006; 34(17):4943-59. PMC: 1635273. DOI: 10.1093/nar/gkl620. View

4.
Singh R, Valcarcel J, Green M . Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science. 1995; 268(5214):1173-6. DOI: 10.1126/science.7761834. View

5.
Witten J, Ule J . Understanding splicing regulation through RNA splicing maps. Trends Genet. 2011; 27(3):89-97. PMC: 3165201. DOI: 10.1016/j.tig.2010.12.001. View