Rouchon C, Weinstein A, Hutchison C, Zubair-Nizami Z, Kohler P, Frank K
J Bacteriol. 2022; 204(10):e0024722.
PMID: 36094307
PMC: 9578411.
DOI: 10.1128/jb.00247-22.
Levit R, Cortes-Perez N, de Moreno de LeBlanc A, Loiseau J, Aucouturier A, Langella P
Gut Microbes. 2022; 14(1):2110821.
PMID: 35960855
PMC: 9377234.
DOI: 10.1080/19490976.2022.2110821.
Wang X, Zhang L, Liang S, Yin Y, Wang P, Li Y
Microb Biotechnol. 2022; 15(7):2112-2125.
PMID: 35298861
PMC: 9249332.
DOI: 10.1111/1751-7915.14033.
Vazquez L, Florez A, Rodriguez J, Mayo B
FEMS Microbiol Lett. 2021; 368(13).
PMID: 34173644
PMC: 8266531.
DOI: 10.1093/femsle/fnab082.
Hoedt E, Bottacini F, Cash N, Bongers R, van Limpt K, Ben Amor K
Front Microbiol. 2021; 12:636822.
PMID: 33833740
PMC: 8021953.
DOI: 10.3389/fmicb.2021.636822.
Construction and Analysis of Food-Grade β-Galactosidase Overexpression System.
He X, Luan M, Han N, Wang T, Zhao X, Yao Y
J Microbiol Biotechnol. 2021; 31(4):550-558.
PMID: 33622994
PMC: 9705900.
DOI: 10.4014/jmb.2101.01028.
The Microbiome as a Therapeutic Target for Multiple Sclerosis: Can Genetically Engineered Probiotics Treat the Disease?.
Kohl H, Castillo A, Ochoa-Reparaz J
Diseases. 2020; 8(3).
PMID: 32872621
PMC: 7563507.
DOI: 10.3390/diseases8030033.
[Use of lactic acid bacteria as mucosal vaccines].
Bermudez-Humaran L, Langella P
Rev Francoph Lab. 2020; 2009(417):79-89.
PMID: 32518601
PMC: 7270964.
DOI: 10.1016/S1773-035X(09)70312-0.
Construction of a shuttle expression vector for lactic acid bacteria.
Kaur T, Balgir P, Kaur B
J Genet Eng Biotechnol. 2019; 17(1):10.
PMID: 31736018
PMC: 6859148.
DOI: 10.1186/s43141-019-0013-4.
Fluorescence Tools Adapted for Real-Time Monitoring of the Behaviors of Species.
Shields R, Kaspar J, Lee K, Underhill S, Burne R
Appl Environ Microbiol. 2019; 85(15).
PMID: 31101614
PMC: 6643251.
DOI: 10.1128/AEM.00620-19.
Efficient and Scalable Precision Genome Editing in through Conditional Recombineering and CRISPR/Cas9-Mediated Counterselection.
Penewit K, Holmes E, McLean K, Ren M, Waalkes A, Salipante S
mBio. 2018; 9(1).
PMID: 29463653
PMC: 5821094.
DOI: 10.1128/mBio.00067-18.
Development of Lactococcus lactis encoding fluorescent proteins, GFP, mCherry and iRFP regulated by the nisin-controlled gene expression system.
Martinez-Jaramillo E, Garza-Morales R, Loera-Arias M, Saucedo-Cardenas O, Montes-de-Oca-Luna R, McNally L
Biotech Histochem. 2017; 92(3):167-174.
PMID: 28318334
PMC: 5638124.
DOI: 10.1080/10520295.2017.1289554.
Enterococcus faecalis readily colonizes the entire gastrointestinal tract and forms biofilms in a germ-free mouse model.
Barnes A, Dale J, Chen Y, Manias D, Greenwood Quaintance K, Karau M
Virulence. 2016; 8(3):282-296.
PMID: 27562711
PMC: 5411234.
DOI: 10.1080/21505594.2016.1208890.
Cell Wall Anchoring of the Campylobacter Antigens to Lactococcus lactis.
Kobierecka P, Olech B, Ksiazek M, Derlatka K, Adamska I, Majewski P
Front Microbiol. 2016; 7:165.
PMID: 26925040
PMC: 4757695.
DOI: 10.3389/fmicb.2016.00165.
Recombinant pediocin in Lactococcus lactis: increased production by propeptide fusion and improved potency by co-production with PedC.
Back A, Borges F, Mangavel C, Paris C, Rondags E, Kapel R
Microb Biotechnol. 2015; 9(4):466-77.
PMID: 26147827
PMC: 4919988.
DOI: 10.1111/1751-7915.12285.
Oral administration of recombinant Lactococcus lactis expressing HSP65 and tandemly repeated P277 reduces the incidence of type I diabetes in non-obese diabetic mice.
Ma Y, Liu J, Hou J, Dong Y, Lu Y, Jin L
PLoS One. 2014; 9(8):e105701.
PMID: 25157497
PMC: 4144892.
DOI: 10.1371/journal.pone.0105701.
Surface proteome analysis of a natural isolate of Lactococcus lactis reveals the presence of pili able to bind human intestinal epithelial cells.
Meyrand M, Guillot A, Goin M, Furlan S, Armalyte J, Kulakauskas S
Mol Cell Proteomics. 2013; 12(12):3935-47.
PMID: 24002364
PMC: 3861735.
DOI: 10.1074/mcp.M113.029066.
Distribution dynamics of recombinant Lactobacillus in the gastrointestinal tract of neonatal rats.
Bao S, Zhu L, Zhuang Q, Wang L, Xu P, Itoh K
PLoS One. 2013; 8(3):e60007.
PMID: 23544119
PMC: 3609735.
DOI: 10.1371/journal.pone.0060007.
AhrC and Eep are biofilm infection-associated virulence factors in Enterococcus faecalis.
Frank K, Guiton P, Barnes A, Manias D, Chuang-Smith O, Kohler P
Infect Immun. 2013; 81(5):1696-708.
PMID: 23460519
PMC: 3648002.
DOI: 10.1128/IAI.01210-12.
Pilus biogenesis in Lactococcus lactis: molecular characterization and role in aggregation and biofilm formation.
Oxaran V, Ledue-Clier F, Dieye Y, Herry J, Pechoux C, Meylheuc T
PLoS One. 2012; 7(12):e50989.
PMID: 23236417
PMC: 3516528.
DOI: 10.1371/journal.pone.0050989.