» Articles » PMID: 2447829

Isolation and Characterization of Streptococcus Cremoris Wg2-specific Promoters

Overview
Date 1987 Oct 1
PMID 2447829
Citations 134
Authors
Affiliations
Soon will be listed here.
Abstract

By cloning MboI fragments in the promoter selection vector pGKV210, which replicates in Streptococcus lactis, Bacillus subtilis, and Escherichia coli and carries a promoterless chloramphenicol acetyltransferase gene, we obtained a number of fragments endowed with promoter activity, partly by direct selection for chloramphenicol resistance in S. lactis IL1403 and partly by selection in B. subtilis. Five fragments were sequenced, and the promoters were mapped with S1 nuclease. The promoters agreed with the E. coli promoter consensus and the B. subtilis vegetative sigma 43 promoter consensus. The promoters were preceded by an A + T-rich region (ranging from 64 to 78% A + T). S1 nuclease mapping data showed that the transcriptional start point in three of the fragments was at a TAG sequence 5 to 9 nucleotides downstream from the promoter. Three fragments carried an open reading frame preceded by a ribosome-binding site which can be recognized by E. coli, B. subtilis, and S. lactis ribosomes.

Citing Articles

Disruption of the Orthologue in the Locus Variable Region of Enterococcus faecalis Causes Cell Surface Changes and Suppresses an -Dependent Lysozyme Resistance Phenotype.

Rouchon C, Weinstein A, Hutchison C, Zubair-Nizami Z, Kohler P, Frank K J Bacteriol. 2022; 204(10):e0024722.

PMID: 36094307 PMC: 9578411. DOI: 10.1128/jb.00247-22.


Use of genetically modified lactic acid bacteria and bifidobacteria as live delivery vectors for human and animal health.

Levit R, Cortes-Perez N, de Moreno de LeBlanc A, Loiseau J, Aucouturier A, Langella P Gut Microbes. 2022; 14(1):2110821.

PMID: 35960855 PMC: 9377234. DOI: 10.1080/19490976.2022.2110821.


Enhancing the capability of Klebsiella pneumoniae to produce 1, 3-propanediol by overexpression and regulation through CRISPR-dCas9.

Wang X, Zhang L, Liang S, Yin Y, Wang P, Li Y Microb Biotechnol. 2022; 15(7):2112-2125.

PMID: 35298861 PMC: 9249332. DOI: 10.1111/1751-7915.14033.


Heterologous expression of equol biosynthesis genes from Adlercreutzia equolifaciens.

Vazquez L, Florez A, Rodriguez J, Mayo B FEMS Microbiol Lett. 2021; 368(13).

PMID: 34173644 PMC: 8266531. DOI: 10.1093/femsle/fnab082.


Broad Purpose Vector for Site-Directed Insertional Mutagenesis in .

Hoedt E, Bottacini F, Cash N, Bongers R, van Limpt K, Ben Amor K Front Microbiol. 2021; 12:636822.

PMID: 33833740 PMC: 8021953. DOI: 10.3389/fmicb.2021.636822.


References
1.
Hudson M, Stewart G . Differential utilization of Staphylococcus aureus promoter sequences by Escherichia coli and Bacillus subtilis. Gene. 1986; 48(1):93-100. DOI: 10.1016/0378-1119(86)90355-0. View

2.
Chang S, Cohen S . High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet. 1979; 168(1):111-5. DOI: 10.1007/BF00267940. View

3.
Kok J, van der Vossen J, Venema G . Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol. 1984; 48(4):726-31. PMC: 241602. DOI: 10.1128/aem.48.4.726-731.1984. View

4.
Gitt M, Wang L, Doi R . A strong sequence homology exists between the major RNA polymerase sigma factors of Bacillus subtilis and Escherichia coli. J Biol Chem. 1985; 260(12):7178-85. View

5.
Kondo J, McKay L . Plasmid transformation of Streptococcus lactis protoplasts: optimization and use in molecular cloning. Appl Environ Microbiol. 1984; 48(2):252-9. PMC: 241498. DOI: 10.1128/aem.48.2.252-259.1984. View