» Articles » PMID: 24448964

Extracellular Adenosine Controls NKT-cell-dependent Hepatitis Induction

Overview
Journal Eur J Immunol
Date 2014 Jan 23
PMID 24448964
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Extracellular adenosine regulates inflammatory responses via the A2A adenosine receptor (A2AR). A2AR deficiency results in much exaggerated acute hepatitis, indicating nonredundancy of adenosine-A2AR pathway in inhibiting immune activation. To identify a critical target of immunoregulatory effect of extracellular adenosine, we focused on NKT cells, which play an indispensable role in hepatitis. An A2AR agonist abolished NKT-cell-dependent induction of acute hepatitis by concanavalin A (Con A) or α-galactosylceramide in mice, corresponding to downregulation of activation markers and cytokines in NKT cells and of NK-cell co-activation. These results show that A2AR signaling can downregulate NKT-cell activation and suppress NKT-cell-triggered inflammatory responses. Next, we hypothesized that NKT cells might be under physiological control of the adenosine-A2AR pathway. Indeed, both Con A and α-galactosylceramide induced more severe hepatitis in A2AR-deficient mice than in WT controls. Transfer of A2AR-deficient NKT cells into A2AR-expressing recipients resulted in exaggeration of Con A-induced liver damage, suggesting that NKT-cell activation is controlled by endogenous adenosine via A2AR, and this physiological regulatory mechanism of NKT cells is critical in the control of tissue-damaging inflammation. The current study suggests the possibility to manipulate NKT-cell activity in inflammatory disorders through intervention to the adenosine-A2AR pathway.

Citing Articles

Adenosine-mediated immune responses in inflammatory bowel disease.

Vuerich M, Nguyen D, Ferrari D, Longhi M Front Cell Dev Biol. 2024; 12:1429736.

PMID: 39188525 PMC: 11345147. DOI: 10.3389/fcell.2024.1429736.


Chinese Cordyceps: Bioactive Components, Antitumor Effects and Underlying Mechanism-A Review.

Liu Y, Guo Z, Zhou X Molecules. 2022; 27(19).

PMID: 36235111 PMC: 9572669. DOI: 10.3390/molecules27196576.


Purinergic signalling in liver diseases: Pathological functions and therapeutic opportunities.

Wang P, Jia J, Zhang D JHEP Rep. 2020; 2(6):100165.

PMID: 33103092 PMC: 7575885. DOI: 10.1016/j.jhepr.2020.100165.


Activation of natural killer T cells contributes to triptolide-induced liver injury in mice.

Wang X, Xue R, Zhang S, Zheng Y, Zhang L, Jiang Z Acta Pharmacol Sin. 2018; 39(12):1847-1854.

PMID: 30013034 PMC: 6289391. DOI: 10.1038/s41401-018-0084-9.


Harnessing the Power of Invariant Natural Killer T Cells in Cancer Immunotherapy.

Bedard M, Salio M, Cerundolo V Front Immunol. 2018; 8:1829.

PMID: 29326711 PMC: 5741693. DOI: 10.3389/fimmu.2017.01829.


References
1.
Beavis P, Stagg J, Darcy P, Smyth M . CD73: a potent suppressor of antitumor immune responses. Trends Immunol. 2012; 33(5):231-7. DOI: 10.1016/j.it.2012.02.009. View

2.
Nishiyama A, Miura K, Miyatake A, Fujisawa Y, Yue W, Fukui T . Renal interstitial concentration of adenosine during endotoxin shock. Eur J Pharmacol. 1999; 385(2-3):209-16. DOI: 10.1016/s0014-2999(99)00716-5. View

3.
Lappas C, Day Y, Marshall M, Engelhard V, Linden J . Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J Exp Med. 2006; 203(12):2639-48. PMC: 2118143. DOI: 10.1084/jem.20061097. View

4.
Chan E, Montesinos M, Fernandez P, Desai A, Delano D, Yee H . Adenosine A(2A) receptors play a role in the pathogenesis of hepatic cirrhosis. Br J Pharmacol. 2006; 148(8):1144-55. PMC: 1752015. DOI: 10.1038/sj.bjp.0706812. View

5.
Ohta A, Ohta A, Madasu M, Kini R, Subramanian M, Goel N . A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular adenosine-rich microenvironments. J Immunol. 2009; 183(9):5487-93. DOI: 10.4049/jimmunol.0901247. View