» Articles » PMID: 24441046

Dual Role of SIRT1 in UVB-induced Skin Tumorigenesis

Overview
Journal Oncogene
Date 2014 Jan 21
PMID 24441046
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

The protein deacetylase SIRT1 regulates various pathways in metabolism, aging and cancer. However, the role of SIRT1 in skin cancer remains unclear. Here, using mice with targeted deletions of SIRT1 in their epidermis in both resistant B6 and sensitive SKH1 hairless backgrounds, we show that the role of SIRT1 in skin cancer development induced by ultraviolet B (UVB) radiation is dependent on its gene dose. Keratinocyte-specific heterozygous deletion of SIRT1 promotes UVB-induced skin tumorigenesis, whereas homozygous deletion of SIRT1 suppresses skin tumor development but sensitizes the B6 mice to chronic solar injury. In mouse skin, SIRT1 is haploinsufficient for UVB-induced DNA damage repair and expression of xeroderma pigmentosum C (XPC), a protein critical for repairing UVB-induced DNA damage. As compared with normal human skin, downregulation of SIRT1 is in parallel with downregulation of XPC in human cutaneous squamous cell carcinoma at both the protein and mRNA levels. In contrast, homozygous SIRT1 deletion in mouse skin augments p53 acetylation and expression of its transcriptional target Noxa, and sensitizes the epidermis to UVB-induced apoptosis in vivo, while heterozygous SIRT1 deletion has no such effect. The gene dosage-dependent function of SIRT1 in DNA repair and cell survival is consistent with the dual roles of SIRT1 in UVB-induced skin tumorigenesis. Our results reveal the gene dosage-dependent in vivo functions of SIRT1 in skin tumorigenesis and may shed light on the role of SIRT1 in epithelial cancer induced by DNA damage.

Citing Articles

The mA reader YTHDC2 regulates UVB-induced DNA damage repair and histone modification.

Yang Z, Verghese M, Yang S, Shah P, He Y Photochem Photobiol. 2024; 100(4):1031-1040.

PMID: 38190286 PMC: 11228125. DOI: 10.1111/php.13904.


miR-29a-SIRT1-Wnt/β-Catenin Axis Regulates Tumor Progression and Survival in Hepatocellular Carcinoma.

Qian L, Zhang Y, Wang G, Li B, Zhou H, Qiu J Biochem Genet. 2023; 62(3):1895-1913.

PMID: 37776468 DOI: 10.1007/s10528-023-10521-7.


The XPA Protein-Life under Precise Control.

Krasikova Y, Lavrik O, Rechkunova N Cells. 2022; 11(23).

PMID: 36496984 PMC: 9739396. DOI: 10.3390/cells11233723.


Moderate Low UVB Irradiation Modulates Tumor-associated Macrophages and Dendritic Cells and Promotes Antitumor Immunity in Tumor-bearing Mice.

Park G, Cui Y, Yang S, Sun M, Wilkinson E, Li H Photochem Photobiol. 2022; 99(2):850-856.

PMID: 35962531 PMC: 9884319. DOI: 10.1111/php.13684.


UV Protection in the Cornea: Failure and Rescue.

Volatier T, Schumacher B, Cursiefen C, Notara M Biology (Basel). 2022; 11(2).

PMID: 35205145 PMC: 8868636. DOI: 10.3390/biology11020278.


References
1.
Yuan Z, Seto E . A functional link between SIRT1 deacetylase and NBS1 in DNA damage response. Cell Cycle. 2007; 6(23):2869-71. DOI: 10.4161/cc.6.23.5026. View

2.
Berg R, Ruven H, Sands A, de Gruijl F, Mullenders L . Defective global genome repair in XPC mice is associated with skin cancer susceptibility but not with sensitivity to UVB induced erythema and edema. J Invest Dermatol. 1998; 110(4):405-9. DOI: 10.1111/j.1523-1747.1998.00173.x. View

3.
Howitz K, Bitterman K, Cohen H, Lamming D, Lavu S, Wood J . Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003; 425(6954):191-6. DOI: 10.1038/nature01960. View

4.
Haigis M, Sinclair D . Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol. 2010; 5:253-95. PMC: 2866163. DOI: 10.1146/annurev.pathol.4.110807.092250. View

5.
Ming M, Shea C, Guo X, Li X, Soltani K, Han W . Regulation of global genome nucleotide excision repair by SIRT1 through xeroderma pigmentosum C. Proc Natl Acad Sci U S A. 2010; 107(52):22623-8. PMC: 3012476. DOI: 10.1073/pnas.1010377108. View