» Articles » PMID: 24438169

Crystal Structures of the Human Dysferlin Inner DysF Domain

Overview
Journal BMC Struct Biol
Publisher Biomed Central
Date 2014 Jan 21
PMID 24438169
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Mutations in dysferlin, the first protein linked with the cell membrane repair mechanism, causes a group of muscular dystrophies called dysferlinopathies. Dysferlin is a type two-anchored membrane protein, with a single C terminal trans-membrane helix, and most of the protein lying in cytoplasm. Dysferlin contains several C2 domains and two DysF domains which are nested one inside the other. Many pathogenic point mutations fall in the DysF domain region.

Results: We describe the crystal structure of the human dysferlin inner DysF domain with a resolution of 1.9 Ångstroms. Most of the pathogenic mutations are part of aromatic/arginine stacks that hold the domain in a folded conformation. The high resolution of the structure show that these interactions are a mixture of parallel ring/guanadinium stacking, perpendicular H bond stacking and aliphatic chain packing.

Conclusions: The high resolution structure of the Dysferlin DysF domain gives a template on which to interpret in detail the pathogenic mutations that lead to disease.

Citing Articles

Utilizing Spermatogenesis and Fertilization Mutants as a Model for Human Disease.

Perez S, Augustineli H, Marcello M J Dev Biol. 2025; 13(1).

PMID: 39982357 PMC: 11843878. DOI: 10.3390/jdb13010004.


Antisense oligonucleotide-mediated exon 27 skipping restores dysferlin function in dysferlinopathy patient-derived muscle cells.

Anwar S, Roshmi R, Woo S, Haque U, Arthur Lee J, Duddy W Mol Ther Nucleic Acids. 2025; 36(1):102443.

PMID: 39967852 PMC: 11834094. DOI: 10.1016/j.omtn.2024.102443.


Limb-Girdle Muscular Dystrophies (LGMD): Clinical features, diagnosis and genetic variability through next generation sequencing.

Mathur P, Kaur A, Vijay U, Gupta A, Agarwal K, Agrawal L Glob Med Genet. 2025; 12(1):100035.

PMID: 39925440 PMC: 11800303. DOI: 10.1016/j.gmg.2024.100035.


Cryo-EM structures of the membrane repair protein dysferlin.

Huang H, Grandinetti G, Heissler S, Chinthalapudi K Nat Commun. 2024; 15(1):9650.

PMID: 39511170 PMC: 11544258. DOI: 10.1038/s41467-024-53773-6.


Clinical description of a homozygous Lys 1169* variant in the DYSF gene associated with autosomal recessive Miyoshi muscular dystrophy type 1: A familial case report.

Aguirre A, Romero V Heliyon. 2024; 10(15):e35333.

PMID: 39170343 PMC: 11336582. DOI: 10.1016/j.heliyon.2024.e35333.


References
1.
Tagawa K, Ogawa M, Kawabe K, Yamanaka G, Matsumura T, Goto K . Protein and gene analyses of dysferlinopathy in a large group of Japanese muscular dystrophy patients. J Neurol Sci. 2003; 211(1-2):23-8. DOI: 10.1016/s0022-510x(03)00041-8. View

2.
Letunic I, Doerks T, Bork P . SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 2011; 40(Database issue):D302-5. PMC: 3245027. DOI: 10.1093/nar/gkr931. View

3.
Cagliani R, Magri F, Toscano A, Merlini L, Fortunato F, Lamperti C . Mutation finding in patients with dysferlin deficiency and role of the dysferlin interacting proteins annexin A1 and A2 in muscular dystrophies. Hum Mutat. 2005; 26(3):283. DOI: 10.1002/humu.9364. View

4.
Evans P . An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr D Biol Crystallogr. 2011; 67(Pt 4):282-92. PMC: 3069743. DOI: 10.1107/S090744491003982X. View

5.
Takahashi T, Aoki M, Tateyama M, Kondo E, Mizuno T, Onodera Y . Dysferlin mutations in Japanese Miyoshi myopathy: relationship to phenotype. Neurology. 2003; 60(11):1799-804. DOI: 10.1212/01.wnl.0000068333.43005.12. View