» Articles » PMID: 24374985

High-field Small Animal Magnetic Resonance Oncology Studies

Overview
Journal Phys Med Biol
Publisher IOP Publishing
Date 2013 Dec 31
PMID 24374985
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High-field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include (1)H, (31)P, chemical exchange saturation transfer imaging and hyperpolarized (13)C MRS as well as diffusion-weighted, blood oxygen level dependent contrast imaging and dynamic contrast-enhanced MRI. These methods have been proven effective in animal studies and are highly relevant to human clinical studies.

Citing Articles

Bridging the translational gap: Implementation of multimodal small animal imaging strategies for tumor burden assessment in a co-clinical trial.

Blocker S, Mowery Y, Holbrook M, Qi Y, Kirsch D, Johnson G PLoS One. 2019; 14(4):e0207555.

PMID: 30958825 PMC: 6453461. DOI: 10.1371/journal.pone.0207555.


Clinical application value of 3.0T MR diffusion tensor imaging in grade diagnosis of gliomas.

Shan W, Wang X Oncol Lett. 2017; 14(2):2009-2014.

PMID: 28781644 PMC: 5530196. DOI: 10.3892/ol.2017.6378.


Characterization of the Tumor Microenvironment and Tumor-Stroma Interaction by Non-invasive Preclinical Imaging.

Ramamonjisoa N, Ackerstaff E Front Oncol. 2017; 7:3.

PMID: 28197395 PMC: 5281579. DOI: 10.3389/fonc.2017.00003.


Tumor stroma interaction is mediated by monocarboxylate metabolism.

Patel B, Ackerstaff E, Serganova I, Kerrigan J, Blasberg R, Koutcher J Exp Cell Res. 2017; 352(1):20-33.

PMID: 28132882 PMC: 5476446. DOI: 10.1016/j.yexcr.2017.01.013.


Intratumoral heterogeneity of breast cancer xenograft models: texture analysis of diffusion-weighted MR imaging.

Yun B, Cho N, Li M, Jang M, Park S, Kang H Korean J Radiol. 2014; 15(5):591-604.

PMID: 25246820 PMC: 4170160. DOI: 10.3348/kjr.2014.15.5.591.

References
1.
Saitoh J, Sakurai H, Suzuki Y, Muramatsu H, Ishikawa H, Kitamoto Y . Correlations between in vivo tumor weight, oxygen pressure, 31P NMR spectroscopy, hypoxic microenvironment marking by beta-D-iodinated azomycin galactopyranoside (beta-D-IAZGP), and radiation sensitivity. Int J Radiat Oncol Biol Phys. 2002; 54(3):903-9. DOI: 10.1016/s0360-3016(02)03013-4. View

2.
Beauregard D, Thelwall P, Chaplin D, Hill S, Adams G, Brindle K . Magnetic resonance imaging and spectroscopy of combretastatin A4 prodrug-induced disruption of tumour perfusion and energetic status. Br J Cancer. 1998; 77(11):1761-7. PMC: 2150333. DOI: 10.1038/bjc.1998.294. View

3.
Reichardt W, Juettner E, Uhl M, Elverfeldt D, Kontny U . Diffusion-weighted imaging as predictor of therapy response in an animal model of Ewing sarcoma. Invest Radiol. 2009; 44(5):298-303. DOI: 10.1097/RLI.0b013e31819dcc84. View

4.
Gabellieri C, Reynolds S, Lavie A, Payne G, Leach M, Eykyn T . Therapeutic target metabolism observed using hyperpolarized 15N choline. J Am Chem Soc. 2008; 130(14):4598-9. DOI: 10.1021/ja8001293. View

5.
Chen A, Albers M, Cunningham C, Kohler S, Yen Y, Hurd R . Hyperpolarized C-13 spectroscopic imaging of the TRAMP mouse at 3T-initial experience. Magn Reson Med. 2007; 58(6):1099-106. DOI: 10.1002/mrm.21256. View