» Articles » PMID: 24335616

Fluorescent Probes for Nucleic Acid Visualization in Fixed and Live Cells

Overview
Journal Molecules
Publisher MDPI
Specialty Biology
Date 2013 Dec 17
PMID 24335616
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

This review analyses the literature concerning non-fluorescent and fluorescent probes for nucleic acid imaging in fixed and living cells from the point of view of their suitability for imaging intracellular native RNA and DNA. Attention is mainly paid to fluorescent probes for fluorescence microscopy imaging. Requirements for the target-binding part and the fluorophore making up the probe are formulated. In the case of native double-stranded DNA, structure-specific and sequence-specific probes are discussed. Among the latest, three classes of dsDNA-targeting molecules are described: (i) sequence-specific peptides and proteins; (ii) triplex-forming oligonucleotides and (iii) polyamide oligo(N-methylpyrrole/N-methylimidazole) minor groove binders. Polyamides seem to be the most promising targeting agents for fluorescent probe design, however, some technical problems remain to be solved, such as the relatively low sequence specificity and the high background fluorescence inside the cells. Several examples of fluorescent probe applications for DNA imaging in fixed and living cells are cited. In the case of intracellular RNA, only modified oligonucleotides can provide such sequence-specific imaging. Several approaches for designing fluorescent probes are considered: linear fluorescent probes based on modified oligonucleotide analogs, molecular beacons, binary fluorescent probes and template-directed reactions with fluorescence probe formation, FRET donor-acceptor pairs, pyrene excimers, aptamers and others. The suitability of all these methods for living cell applications is discussed.

Citing Articles

Selective inhibition of cancer cell migration using a pH-responsive nucleobase-modified DNA aptamer.

Chen Y, Morihiro K, Nemoto Y, Ichimura A, Ueki R, Sando S Chem Sci. 2024; .

PMID: 39355222 PMC: 11440363. DOI: 10.1039/d4sc04424j.


Covalent Organic Framework-Based Theranostic Platforms for Restricting H1N1 Influenza Virus Infection.

Ding L, Ji X, Liu Y, Shi M, Li J, Liu F Int J Nanomedicine. 2024; 19:7399-7414.

PMID: 39071500 PMC: 11278156. DOI: 10.2147/IJN.S461866.


Open-source and low-cost miniature microscope for on-site fluorescence detection.

Kawai M, Oda H, Mimura H, Osaki T, Takeuchi S HardwareX. 2024; 19:e00545.

PMID: 39006472 PMC: 11239704. DOI: 10.1016/j.ohx.2024.e00545.


Distinctive Nucleic Acid Recognition by Lysine-Embedded Phenanthridine Peptides.

Matic J, Piotrowski P, Vrban L, Kobetic R, Vianello R, Juric I Int J Mol Sci. 2024; 25(9).

PMID: 38732083 PMC: 11084427. DOI: 10.3390/ijms25094866.


CRISPR-Based Split Luciferase as a Biosensor for Unique DNA Sequences In Situ.

Heath N, Segal D Methods Mol Biol. 2024; 2784:285-299.

PMID: 38502493 DOI: 10.1007/978-1-0716-3766-1_19.


References
1.
Molenaar C, Wiesmeijer K, Verwoerd N, Khazen S, Eils R, Tanke H . Visualizing telomere dynamics in living mammalian cells using PNA probes. EMBO J. 2003; 22(24):6631-41. PMC: 291828. DOI: 10.1093/emboj/cdg633. View

2.
Ma C, Yang X, Wang K, Tang Z, Li W, Tan W . A novel kinase-based ATP assay using molecular beacon. Anal Biochem. 2007; 372(1):131-3. DOI: 10.1016/j.ab.2007.08.003. View

3.
Teo Y, Wilson J, Kool E . Polyfluorophores on a DNA backbone: a multicolor set of labels excited at one wavelength. J Am Chem Soc. 2009; 131(11):3923-33. PMC: 2658631. DOI: 10.1021/ja805502k. View

4.
Wang S, Guo J, Ono T, Kool E . DNA polyfluorophores for real-time multicolor tracking of dynamic biological systems. Angew Chem Int Ed Engl. 2012; 51(29):7176-80. PMC: 3489938. DOI: 10.1002/anie.201201928. View

5.
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S . Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009; 326(5959):1509-12. DOI: 10.1126/science.1178811. View