» Articles » PMID: 18541703

Centromere Mitotic Recombination in Mammalian Cells

Overview
Journal J Cell Biol
Specialty Cell Biology
Date 2008 Jun 11
PMID 18541703
Citations 72
Authors
Affiliations
Soon will be listed here.
Abstract

Centromeres are special structures of eukaryotic chromosomes that hold sister chromatid together and ensure proper chromosome segregation during cell division. Centromeres consist of repeated sequences, which have hindered the study of centromere mitotic recombination and its consequences for centromeric function. We use a chromosome orientation fluorescence in situ hybridization technique to visualize and quantify recombination events at mouse centromeres. We show that centromere mitotic recombination occurs in normal cells to a higher frequency than telomere recombination and to a much higher frequency than chromosome-arm recombination. Furthermore, we show that centromere mitotic recombination is increased in cells lacking the Dnmt3a and Dnmt3b DNA methyltransferases, suggesting that the epigenetic state of centromeric heterochromatin controls recombination events at these regions. Increased centromere recombination in Dnmt3a,3b-deficient cells is accompanied by changes in the length of centromere repeats, suggesting that prevention of illicit centromere recombination is important to maintain centromere integrity in the mouse.

Citing Articles

The homologous recombination factors BRCA2 and PALB2 interplay with mismatch repair pathways to maintain centromere stability and cell viability.

Graham E, Rampazzo L, Leung C, Wall J, Gerocz E, Liskovykh M Cell Rep. 2025; 44(2):115259.

PMID: 39893637 PMC: 11860765. DOI: 10.1016/j.celrep.2025.115259.


Human AAA+ ATPase FIGNL1 suppresses RAD51-mediated ultra-fine bridge formation.

Matsuzaki K, Shinohara A, Shinohara M Nucleic Acids Res. 2024; 52(10):5774-5791.

PMID: 38597669 PMC: 11162793. DOI: 10.1093/nar/gkae263.


Gross Chromosomal Rearrangement at Centromeres.

Xu R, Pan Z, Nakagawa T Biomolecules. 2024; 14(1).

PMID: 38254628 PMC: 10813616. DOI: 10.3390/biom14010028.


Splitting the yeast centromere by recombination.

Kozmin S, Dominska M, Zheng D, Petes T Nucleic Acids Res. 2023; 52(2):690-707.

PMID: 37994724 PMC: 10810202. DOI: 10.1093/nar/gkad1110.


Centromeres as universal hotspots of DNA breakage, driving RAD51-mediated recombination during quiescence.

Saayman X, Graham E, Nathan W, Nussenzweig A, Esashi F Mol Cell. 2023; 83(4):523-538.e7.

PMID: 36702125 PMC: 10009740. DOI: 10.1016/j.molcel.2023.01.004.


References
1.
Liebman S, Symington L, Petes T . Mitotic recombination within the centromere of a yeast chromosome. Science. 1988; 241(4869):1074-7. DOI: 10.1126/science.3137657. View

2.
Warburton P, Waye J, Willard H . Nonrandom localization of recombination events in human alpha satellite repeat unit variants: implications for higher-order structural characteristics within centromeric heterochromatin. Mol Cell Biol. 1993; 13(10):6520-9. PMC: 364711. DOI: 10.1128/mcb.13.10.6520-6529.1993. View

3.
Bailey S, Brenneman M, Goodwin E . Frequent recombination in telomeric DNA may extend the proliferative life of telomerase-negative cells. Nucleic Acids Res. 2004; 32(12):3743-51. PMC: 484178. DOI: 10.1093/nar/gkh691. View

4.
Chen C, Hong Y, Ontiveros S, Egholm M, Strauss W . Single base discrimination of CENP-B repeats on mouse and human Chromosomes with PNA-FISH. Mamm Genome. 1999; 10(1):13-8. DOI: 10.1007/s003359900934. View

5.
Guenatri M, Bailly D, Maison C, Almouzni G . Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J Cell Biol. 2004; 166(4):493-505. PMC: 2172221. DOI: 10.1083/jcb.200403109. View