Exogenous Nucleotides Antagonize the Developmental Toxicity of Ethanol in Vitro
Overview
Biotechnology
General Medicine
Authors
Affiliations
The objective of this study was to assess whether nucleotides supplementation in vitro could suppress ethanol-induced developmental toxicity in mouse. The models of whole embryo culture (WEC) and midbrain (MB) cell micromass culture were used in this study. In WEC system, exposure to 4.0 mg/mL ethanol for 48 h yielded various developmental malformations of the mice embryos. Nucleotides supplementation (0.16, 0.80, 4.00, 20.00, and 100.00 mg/L) improved the growth parameters to some extent, and the protective effects peaked at 4.00 mg/L. In MB cell micromass culture system, exposure to 4.0 mg/mL ethanol for 5 days resulted in suppression of proliferation and differentiation. Supplementation of nucleotides (0.16, 0.80, 4.00, 20.00, and 100.00 mg/L) showed some protective effects, which peaked at 4.00 mg/L, too. The present research indicated that nucleotides supplementation might be of some benefit in the prevention of ethanol-induced birth defects; however, appropriate dosage requires attention.