» Articles » PMID: 24312558

BtcA, A Class IA Type III Chaperone, Interacts with the BteA N-terminal Domain Through a Globular/non-globular Mechanism

Overview
Journal PLoS One
Date 2013 Dec 7
PMID 24312558
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Bordetella pertussis, the etiological agent of "whooping cough" disease, utilizes the type III secretion system (T3SS) to deliver a 69 kDa cytotoxic effector protein, BteA, directly into the host cells. As with other T3SS effectors, prior to its secretion BteA binds BtcA, a 13.9 kDa protein predicted to act as a T3SS class IA chaperone. While this interaction had been characterized for such effector-chaperone pairs in other pathogens, it has yet to be fully investigated in Bordetella. Here we provide the first biochemical proof that BtcA is indeed a class IA chaperone, responsible for the binding of BteA's N-terminal domain. We bring forth extensive evidence that BtcA binds its substrate effector through a dual-interface binding mechanism comprising of non-globular and bi-globular interactions at a moderate micromolar level binding affinity. We demonstrate that the non-globular interactions involve the first 31 N-terminal residues of BteA287 and their removal leads to destabilization of the effector-chaperone complex and lower binding affinities to BtcA. These findings represent an important first step towards a molecular understanding of BteA secretion and cell entry.

Citing Articles

Eosinophils as drivers of bacterial immunomodulation and persistence.

Parrish K, Gestal M Infect Immun. 2024; 92(9):e0017524.

PMID: 39007622 PMC: 11385729. DOI: 10.1128/iai.00175-24.


Lipid binding by the N-terminal motif mediates plasma membrane localization of Bordetella effector protein BteA.

Malcova I, Bumba L, Uljanic F, Kuzmenko D, Nedomova J, Kamanova J J Biol Chem. 2021; 296:100607.

PMID: 33789161 PMC: 8100071. DOI: 10.1016/j.jbc.2021.100607.


Type III Secretion Injectosome and Effector Proteins.

Kamanova J Front Cell Infect Microbiol. 2020; 10:466.

PMID: 33014891 PMC: 7498569. DOI: 10.3389/fcimb.2020.00466.


Enhancement of immune response against Bordetella spp. by disrupting immunomodulation.

Gestal M, Howard L, Dewan K, Johnson H, Barbier M, Bryant C Sci Rep. 2020; 9(1):20261.

PMID: 31889098 PMC: 6937331. DOI: 10.1038/s41598-019-56652-z.


Integrated Signaling Pathways Mediate Bordetella Immunomodulation, Persistence, and Transmission.

Gestal M, Whitesides L, Harvill E Trends Microbiol. 2019; 27(2):118-130.

PMID: 30661570 PMC: 6342287. DOI: 10.1016/j.tim.2018.09.010.


References
1.
French C, Panina E, Yeh S, Griffith N, Arambula D, Miller J . The Bordetella type III secretion system effector BteA contains a conserved N-terminal motif that guides bacterial virulence factors to lipid rafts. Cell Microbiol. 2009; 11(12):1735-49. PMC: 2788067. DOI: 10.1111/j.1462-5822.2009.01361.x. View

2.
Nielsen M, Lundegaard C, Lund O, Petersen T . CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles. Nucleic Acids Res. 2010; 38(Web Server issue):W576-81. PMC: 2896139. DOI: 10.1093/nar/gkq535. View

3.
Carn F, Guyot S, Baron A, Perez J, Buhler E, Zanchi D . Structural properties of colloidal complexes between condensed tannins and polysaccharide hyaluronan. Biomacromolecules. 2012; 13(3):751-9. DOI: 10.1021/bm201674n. View

4.
Locher M, Lehnert B, Krauss K, Heesemann J, Groll M, Wilharm G . Crystal structure of the Yersinia enterocolitica type III secretion chaperone SycT. J Biol Chem. 2005; 280(35):31149-55. DOI: 10.1074/jbc.M500603200. View

5.
Cornelis G . The type III secretion injectisome. Nat Rev Microbiol. 2006; 4(11):811-25. DOI: 10.1038/nrmicro1526. View