Ulbrich M, Seward C, Ivanov A, Ward B, Butler J, Dziejman M
mBio. 2025; 16(3):e0301824.
PMID: 39878476
PMC: 11898728.
DOI: 10.1128/mbio.03018-24.
Jung H, Han G, Lee D, Jung H, Kim Y, Kong H
Plants (Basel). 2025; 14(1.
PMID: 39795357
PMC: 11722782.
DOI: 10.3390/plants14010097.
Patel D, Stogios P, Jaroszewski L, Urbanus M, Sedova M, Semper C
Mol Syst Biol. 2024; 21(1):59-89.
PMID: 39562741
PMC: 11696984.
DOI: 10.1038/s44320-024-00076-z.
Benyamini P
Antibiotics (Basel). 2024; 13(10).
PMID: 39452186
PMC: 11504868.
DOI: 10.3390/antibiotics13100919.
Calia G, Porracciolo P, Chen Y, Kozlowski D, Schuler H, Cestaro A
Commun Biol. 2024; 7(1):850.
PMID: 38992096
PMC: 11239862.
DOI: 10.1038/s42003-024-06515-9.
Exploring the comparative genome of rice pathogen : unveiling virulence, fitness traits, and a potential type III secretion system effector.
Mannaa M, Lee D, Lee H, Han G, Kang M, Kim T
Front Plant Sci. 2024; 15:1416253.
PMID: 38845849
PMC: 11153758.
DOI: 10.3389/fpls.2024.1416253.
Comparative genomic analyses provide insight into the pathogenicity of three Pseudomonas syringae pv. actinidiae strains from Anhui Province, China.
Wang Q, Zhang Y, Chen R, Zhang L, Fu M, Zhang L
BMC Genomics. 2024; 25(1):461.
PMID: 38734623
PMC: 11088785.
DOI: 10.1186/s12864-024-10384-1.
Translocation of YopJ family effector proteins through the VirB/VirD4 T4SS of .
Fromm K, Ortelli M, Boegli A, Dehio C
Proc Natl Acad Sci U S A. 2024; 121(20):e2310348121.
PMID: 38709922
PMC: 11098119.
DOI: 10.1073/pnas.2310348121.
Multitask Approach to Localize Rhizobial Type Three Secretion System Effector Proteins Inside Eukaryotic Cells.
Jimenez-Guerrero I, Lopez-Baena F, Medina C
Plants (Basel). 2023; 12(11).
PMID: 37299112
PMC: 10255152.
DOI: 10.3390/plants12112133.
type III secretion system 2 is not restricted to the and encodes differentially distributed repertoires of effector proteins.
Jerez S, Plaza N, Bravo V, Urrutia I, Blondel C
Microb Genom. 2023; 9(4).
PMID: 37018030
PMC: 10210961.
DOI: 10.1099/mgen.0.000973.
Exploring structural features and potential lipid interactions of Pseudomonas aeruginosa type three secretion effector PemB by spectroscopic and calorimetric experiments.
Choudhury A, Saha S, Chandra Maiti N, Datta S
Protein Sci. 2023; 32(4):e4627.
PMID: 36916835
PMC: 10044109.
DOI: 10.1002/pro.4627.
Targeting bacterial pathogenesis by inhibiting virulence-associated Type III and Type IV secretion systems.
Blasey N, Rehrmann D, Riebisch A, Muhlen S
Front Cell Infect Microbiol. 2023; 12:1065561.
PMID: 36704108
PMC: 9872159.
DOI: 10.3389/fcimb.2022.1065561.
Cronobacter sakazakii Cue for the Attraction and Its Impact on the Immunity of Caenorhabditis elegans.
Muthubharathi B, Ravichandiran V, Balamurugan K
Infect Immun. 2022; 90(12):e0028122.
PMID: 36377894
PMC: 9753658.
DOI: 10.1128/iai.00281-22.
T3SS Effector EseN Modulates Expression of Host Genes Involved in the Immune Response.
Dubytska L, Koirala R, Sanchez A, Thune R
Microorganisms. 2022; 10(7).
PMID: 35889053
PMC: 9323599.
DOI: 10.3390/microorganisms10071334.
The NEL Family of Bacterial E3 Ubiquitin Ligases.
Bullones-Bolanos A, Bernal-Bayard J, Ramos-Morales F
Int J Mol Sci. 2022; 23(14).
PMID: 35887072
PMC: 9320238.
DOI: 10.3390/ijms23147725.
Detection and distribution of virulence genes in isolates causing infection in cultured carps.
Ahangarzadeh M, Ghorbanpour Najafabadi M, Peyghan R, Houshmand H, Sharif Rohani M, Soltani M
Vet Res Forum. 2022; 13(1):55-60.
PMID: 35601789
PMC: 9094588.
DOI: 10.30466/vrf.2020.115998.2761.
The Contribution of the Predicted Sorting Platform Component HrcQ to Type III Secretion in pv. Depends on an Internal Translation Start Site.
Otten C, Seifert T, Hausner J, Buttner D
Front Microbiol. 2021; 12:752733.
PMID: 34721356
PMC: 8553256.
DOI: 10.3389/fmicb.2021.752733.
The super repertoire of type IV effectors in the pangenome of Ehrlichia spp. provides insights into host-specificity and pathogenesis.
Noroy C, Meyer D
PLoS Comput Biol. 2021; 17(7):e1008788.
PMID: 34252087
PMC: 8274917.
DOI: 10.1371/journal.pcbi.1008788.
Need for speed: bacterial effector XopJ2 is associated with increased dispersal velocity of Xanthomonas perforans.
Sharma A, Timilsina S, Abrahamian P, Minsavage G, Colee J, Ojiambo P
Environ Microbiol. 2021; 23(10):5850-5865.
PMID: 33891376
PMC: 8597037.
DOI: 10.1111/1462-2920.15541.
In-silico structural analysis of Pseudomonas syringae effector HopZ3 reveals ligand binding activity and virulence function.
Chakraborty J
J Plant Res. 2021; 134(3):599-611.
PMID: 33730245
DOI: 10.1007/s10265-021-01274-8.