Kim J
Int J Mol Sci. 2024; 25(18).
PMID: 39337606
PMC: 11432211.
DOI: 10.3390/ijms251810121.
Mukhopadhyay J, Hausner G
Cells. 2021; 10(8).
PMID: 34440770
PMC: 8393795.
DOI: 10.3390/cells10082001.
Plant A, Gray J
Photosynth Res. 2014; 16(1-2):23-39.
PMID: 24430990
DOI: 10.1007/BF00039484.
Nagy V, Pirakitikulr N, Zhou K, Chillon I, Luo J, Pyle A
RNA. 2013; 19(9):1266-78.
PMID: 23882113
PMC: 3753933.
DOI: 10.1261/rna.039123.113.
Zhuang F, Mastroianni M, White T, Lambowitz A
Proc Natl Acad Sci U S A. 2009; 106(43):18189-94.
PMID: 19833873
PMC: 2775298.
DOI: 10.1073/pnas.0910277106.
Protein-free small nuclear RNAs catalyze a two-step splicing reaction.
Valadkhan S, Mohammadi A, Jaladat Y, Geisler S
Proc Natl Acad Sci U S A. 2009; 106(29):11901-6.
PMID: 19549866
PMC: 2715495.
DOI: 10.1073/pnas.0902020106.
Visualizing the solvent-inaccessible core of a group II intron ribozyme.
Swisher J, Duarte C, Su L, Pyle A
EMBO J. 2001; 20(8):2051-61.
PMID: 11296237
PMC: 125427.
DOI: 10.1093/emboj/20.8.2051.
Tight binding of the 5' exon to domain I of a group II self-splicing intron requires completion of the intron active site.
Costa M, Michel F
EMBO J. 1999; 18(4):1025-37.
PMID: 10022844
PMC: 1171194.
DOI: 10.1093/emboj/18.4.1025.
Influence of substrate structure on in vitro ribozyme activity of a group II intron.
Nolte A, Chanfreau G, Jacquier A
RNA. 1998; 4(6):694-708.
PMID: 9622128
PMC: 1369651.
DOI: 10.1017/s1355838298980165.
Kinetic analysis of the 5' splice junction hydrolysis of a group II intron promoted by domain 5.
Franzen J, Zhang M, Peebles C
Nucleic Acids Res. 1993; 21(3):627-34.
PMID: 8382803
PMC: 309162.
DOI: 10.1093/nar/21.3.627.
Interaction of intronic boundaries is required for the second splicing step efficiency of a group II intron.
Chanfreau G, Jacquier A
EMBO J. 1993; 12(13):5173-80.
PMID: 8262060
PMC: 413780.
DOI: 10.1002/j.1460-2075.1993.tb06212.x.
Splicing of group II introns in spinach chloroplasts (in vivo): analysis of lariat formation.
Kim J, Hollingsworth M
Curr Genet. 1993; 23(2):175-80.
PMID: 7679329
DOI: 10.1007/BF00352018.
Stereochemical selectivity of group II intron splicing, reverse splicing, and hydrolysis reactions.
Podar M, Perlman P, Padgett R
Mol Cell Biol. 1995; 15(8):4466-78.
PMID: 7542746
PMC: 230686.
DOI: 10.1128/MCB.15.8.4466.
Synthesis of circular RNA in bacteria and yeast using RNA cyclase ribozymes derived from a group I intron of phage T4.
Ford E, Ares Jr M
Proc Natl Acad Sci U S A. 1994; 91(8):3117-21.
PMID: 7512723
PMC: 43526.
DOI: 10.1073/pnas.91.8.3117.
Branch-point attack in group II introns is a highly reversible transesterification, providing a potential proofreading mechanism for 5'-splice site selection.
Chin K, Pyle A
RNA. 1995; 1(4):391-406.
PMID: 7493317
PMC: 1482411.
Structure of the catalytic core of the Tetrahymena ribozyme as indicated by reactive abbreviated forms of the molecule.
Joyce G, Inoue T
Nucleic Acids Res. 1987; 15(23):9825-40.
PMID: 3697083
PMC: 306534.
DOI: 10.1093/nar/15.23.9825.
Group II intron domain 5 facilitates a trans-splicing reaction.
Jarrell K, Dietrich R, Perlman P
Mol Cell Biol. 1988; 8(6):2361-6.
PMID: 3405208
PMC: 363434.
DOI: 10.1128/mcb.8.6.2361-2366.1988.
Self-splicing of a group II intron in yeast mitochondria: dependence on 5' exon sequences.
van der Veen R, Arnberg A, Grivell L
EMBO J. 1987; 6(4):1079-84.
PMID: 3297671
PMC: 553505.
DOI: 10.1002/j.1460-2075.1987.tb04861.x.
A nicked group II intron and trans-splicing in liverwort, Marchantia polymorpha, chloroplasts.
Kohchi T, Umesono K, Ogura Y, Komine Y, Nakahigashi K, Komano T
Nucleic Acids Res. 1988; 16(21):10025-36.
PMID: 3194192
PMC: 338834.
DOI: 10.1093/nar/16.21.10025.
Mutations at the lariat acceptor site allow self-splicing of a group II intron without lariat formation.
van der Veen R, Kwakman J, Grivell L
EMBO J. 1987; 6(12):3827-31.
PMID: 2828039
PMC: 553855.
DOI: 10.1002/j.1460-2075.1987.tb02719.x.