» Articles » PMID: 24301868

Promoter Targeting ShRNA Suppresses HIV-1 Infection In Vivo Through Transcriptional Gene Silencing

Overview
Publisher Cell Press
Date 2013 Dec 5
PMID 24301868
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

Despite prolonged and intensive application, combined antiretroviral therapy cannot eradicate human immunodeficiency virus (HIV)-1 because it is harbored as a latent infection, surviving for long periods of time. Alternative approaches are required to overcome the limitations of current therapy. We have been developing a short interfering RNA (siRNA) gene silencing approach. Certain siRNAs targeting promoter regions of genes induce transcriptional gene silencing. We previously reported substantial transcriptional gene silencing of HIV-1 replication by an siRNA targeting the HIV-1 promoter in vitro. In this study, we show that this siRNA, expressed as a short hairpin RNA (shRNA) (shPromA-JRFL) delivered by lentiviral transduction of human peripheral blood mononuclear cells (PBMCs), which are then used to reconstitute NOJ mice, is able to inhibit HIV-1 replication in vivo, whereas a three-base mismatched variant (shPromA-M2) does not. In shPromA-JRFL-treated mice, HIV-1 RNA in serum is significantly reduced, and the ratio of CD4(+)/CD8(+) T cells is significantly elevated. Expression levels of the antisense RNA strand inversely correlates with HIV-1 RNA in serum. The silenced HIV-1 can be reactivated by T-cell activation in ex vivo cultures. HIV-1 suppression is not due to offtarget effects of shPromA-JRFL. These data provide "proof-of principle" that an shRNA targeting the HIV-1 promoter is able to suppress HIV-1 replication in vivo.Molecular Therapy-Nucleic Acids (2013) 2, e137; doi:10.1038/mtna.2013.64; published online 3 December 2013.

Citing Articles

Harnessing antiviral RNAi therapeutics for pandemic viruses: SARS-CoV-2 and HIV.

Bowden-Reid E, Moles E, Kelleher A, Ahlenstiel C Drug Deliv Transl Res. 2025; .

PMID: 39833468 DOI: 10.1007/s13346-025-01788-x.


Current State of Therapeutics for HTLV-1.

Wang T, Hirons A, Doerflinger M, Morris K, Ledger S, Purcell D Viruses. 2024; 16(10).

PMID: 39459949 PMC: 11512412. DOI: 10.3390/v16101616.


A CRISPR/RfxCas13d-mediated strategy for efficient RNA knockdown in mouse embryonic development.

Zhang L, Cao S, Wu H, Yan M, Li J, Chen L Sci China Life Sci. 2024; 67(11):2297-2306.

PMID: 39110403 DOI: 10.1007/s11427-023-2572-6.


Advances in HIV Gene Therapy.

Kitawi R, Ledger S, Kelleher A, Ahlenstiel C Int J Mol Sci. 2024; 25(5).

PMID: 38474018 PMC: 10931721. DOI: 10.3390/ijms25052771.


MicroRNAs and long non-coding RNAs during transcriptional regulation and latency of HIV and HTLV.

Alpuche-Lazcano S, Scarborough R, Gatignol A Retrovirology. 2024; 21(1):5.

PMID: 38424561 PMC: 10905857. DOI: 10.1186/s12977-024-00637-y.


References
1.
Wong J, Hezareh M, Gunthard H, Havlir D, Ignacio C, Spina C . Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science. 1997; 278(5341):1291-5. DOI: 10.1126/science.278.5341.1291. View

2.
Colin L, Van Lint C . Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology. 2009; 6:111. PMC: 2797771. DOI: 10.1186/1742-4690-6-111. View

3.
Della Chiara G, Crotti A, Liboi E, Giacca M, Poli G, Lusic M . Negative regulation of HIV-1 transcription by a heterodimeric NF-κB1/p50 and C-terminally truncated STAT5 complex. J Mol Biol. 2011; 410(5):933-43. DOI: 10.1016/j.jmb.2011.03.044. View

4.
Das A, Brummelkamp T, Westerhout E, Vink M, Madiredjo M, Bernards R . Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol. 2004; 78(5):2601-5. PMC: 369246. DOI: 10.1128/jvi.78.5.2601-2605.2004. View

5.
Turner A, de la Cruz J, Morris K . Mobilization-competent Lentiviral Vector-mediated Sustained Transcriptional Modulation of HIV-1 Expression. Mol Ther. 2008; 17(2):360-8. PMC: 2835059. DOI: 10.1038/mt.2008.268. View