» Articles » PMID: 24292421

Direct Visualization of Magnetoelectric Domains

Overview
Journal Nat Mater
Date 2013 Dec 3
PMID 24292421
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

The coupling between the magnetic and electric dipoles in multiferroic and magnetoelectric materials holds promise for conceptually novel electronic devices. This calls for the development of local probes of the magnetoelectric response, which is strongly affected by defects in magnetic and ferroelectric ground states. For example, multiferroic hexagonal rare earth manganites exhibit a dense network of boundaries between six degenerate states of their crystal lattice, which are locked to both ferroelectric and magnetic domain walls. Here we present the application of a magnetoelectric force microscopy technique that combines magnetic force microscopy with in situ modulating high electric fields. This method allows us to image the magnetoelectric response of the domain patterns in hexagonal manganites directly. We find that this response changes sign at each structural domain wall, a result that is corroborated by symmetry analysis and phenomenological modelling, and provides compelling evidence for a lattice-mediated magnetoelectric coupling. The direct visualization of magnetoelectric domains at mesoscopic scales opens up explorations of emergent phenomena in multifunctional materials with multiple coupled orders.

Citing Articles

Robust multiferroic in interfacial modulation synthesized wafer-scale one-unit-cell of chromium sulfide.

Song L, Zhao Y, Xu B, Du R, Li H, Feng W Nat Commun. 2024; 15(1):721.

PMID: 38267426 PMC: 10808545. DOI: 10.1038/s41467-024-44929-5.


In-plane charged antiphase boundary and 180° domain wall in a ferroelectric film.

Cai X, Chen C, Xie L, Wang C, Gui Z, Gao Y Nat Commun. 2023; 14(1):8174.

PMID: 38071396 PMC: 10710403. DOI: 10.1038/s41467-023-44091-4.


Imaging mesoscopic antiferromagnetic spin textures in the dilute limit from single-geometry resonant coherent x-ray diffraction.

Bluschke M, Basak R, Barbour A, Warner A, Fursich K, Wilkins S Sci Adv. 2022; 8(29):eabn6882.

PMID: 35857841 PMC: 9299548. DOI: 10.1126/sciadv.abn6882.


Dynamics and manipulation of ferroelectric domain walls in bismuth ferrite thin films.

Xiao S, Jin Y, Lu X, Cheong S, Li J, Li Y Natl Sci Rev. 2021; 7(2):278-284.

PMID: 34692043 PMC: 8288939. DOI: 10.1093/nsr/nwz176.


Single-phase multiferroics: new materials, phenomena, and physics.

Lu C, Wu M, Lin L, Liu J Natl Sci Rev. 2021; 6(4):653-668.

PMID: 34691921 PMC: 8291614. DOI: 10.1093/nsr/nwz091.


References
1.
Cheong S, Mostovoy M . Multiferroics: a magnetic twist for ferroelectricity. Nat Mater. 2007; 6(1):13-20. DOI: 10.1038/nmat1804. View

2.
Wang W, Zhao J, Wang W, Gai Z, Balke N, Chi M . Room-temperature multiferroic hexagonal LuFeO3 films. Phys Rev Lett. 2014; 110(23):237601. DOI: 10.1103/PhysRevLett.110.237601. View

3.
Van Aken B, Palstra T, Filippetti A, Spaldin N . The origin of ferroelectricity in magnetoelectric YMnO3. Nat Mater. 2004; 3(3):164-70. DOI: 10.1038/nmat1080. View

4.
Geng Y, Lee N, Choi Y, Cheong S, Wu W . Collective magnetism at multiferroic vortex domain walls. Nano Lett. 2012; 12(12):6055-9. DOI: 10.1021/nl301432z. View

5.
Ramesh R, Spaldin N . Multiferroics: progress and prospects in thin films. Nat Mater. 2007; 6(1):21-9. DOI: 10.1038/nmat1805. View