» Articles » PMID: 24162883

Landau Theory of Topological Defects in Multiferroic Hexagonal Manganites

Overview
Journal Nat Mater
Date 2013 Oct 29
PMID 24162883
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Topological defects in ordered states with spontaneously broken symmetry often have unusual physical properties, such as fractional electric charge or a quantized magnetic field flux, originating from their non-trivial topology. Coupled topological defects in systems with several coexisting orders give rise to unconventional functionalities, such as the electric-field control of magnetization in multiferroics resulting from the coupling between the ferroelectric and ferromagnetic domain walls. Hexagonal manganites provide an extra degree of freedom: in these materials, both ferroelectricity and magnetism are coupled to an additional, non-ferroelectric structural order parameter. Here we present a theoretical study of topological defects in hexagonal manganites based on Landau theory with parameters determined from first-principles calculations. We explain the observed flip of electric polarization at the boundaries of structural domains, the origin of the observed discrete vortices, and the clamping between ferroelectric and antiferromagnetic domain walls. We show that structural vortices induce magnetic ones and that, consistent with a recent experimental report, ferroelectric domain walls can carry a magnetic moment.

Citing Articles

Reversible long-range domain wall motion in an improper ferroelectric.

Zahn M, Muller A, Kelley K, Neumayer S, Kalinin S, Kezsmarki I Nat Commun. 2025; 16(1):1781.

PMID: 39971981 PMC: 11840035. DOI: 10.1038/s41467-025-57062-8.


Three-dimensional domain identification in a single hexagonal manganite nanocrystal.

Mokhtar A, Serban D, Porter D, Lichtenberg F, Collins S, Bombardi A Nat Commun. 2024; 15(1):3587.

PMID: 38678047 PMC: 11055849. DOI: 10.1038/s41467-024-48002-z.


Mechanical manipulation for ordered topological defects.

Gao Z, Zhang Y, Li X, Zhang X, Chen X, Du G Sci Adv. 2024; 10(1):eadi5894.

PMID: 38170776 PMC: 10796077. DOI: 10.1126/sciadv.adi5894.


Out-of-plane ferroelectricity and robust magnetoelectricity in quasi-two-dimensional materials.

Lu X, Zhang H, Zhou Y, Zhu T, Xiang H, Dong S Sci Adv. 2023; 9(47):eadi0138.

PMID: 37992171 PMC: 10665001. DOI: 10.1126/sciadv.adi0138.


Pressure Control of Nonferroelastic Ferroelectric Domains in ErMnO.

Sandvik O, Muller A, Anes H, Zahn M, He J, Fiebig M Nano Lett. 2023; 23(15):6994-7000.

PMID: 37470766 PMC: 10416345. DOI: 10.1021/acs.nanolett.3c01638.


References
1.
Fong D, Stephenson G, Streiffer S, Eastman J, Auciello O, Fuoss P . Ferroelectricity in ultrathin perovskite films. Science. 2004; 304(5677):1650-3. DOI: 10.1126/science.1098252. View

2.
Chae S, Horibe Y, Jeong D, Rodan S, Lee N, Cheong S . Self-organization, condensation, and annihilation of topological vortices and antivortices in a multiferroic. Proc Natl Acad Sci U S A. 2010; 107(50):21366-70. PMC: 3003016. DOI: 10.1073/pnas.1011380107. View

3.
Kitagawa Y, Hiraoka Y, Honda T, Ishikura T, Nakamura H, Kimura T . Low-field magnetoelectric effect at room temperature. Nat Mater. 2010; 9(10):797-802. DOI: 10.1038/nmat2826. View

4.
Choi T, Horibe Y, Yi H, Choi Y, Wu W, Cheong S . Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat Mater. 2010; 9(3):253-8. DOI: 10.1038/nmat2632. View

5.
Ueland B, Lynn J, Laver M, Choi Y, Cheong S . Origin of electric-field-induced magnetization in multiferroic HoMnO3. Phys Rev Lett. 2010; 104(14):147204. DOI: 10.1103/PhysRevLett.104.147204. View