» Articles » PMID: 24255095

Cell-intrinsic Drivers of Dendrite Morphogenesis

Overview
Journal Development
Specialty Biology
Date 2013 Nov 21
PMID 24255095
Citations 60
Authors
Affiliations
Soon will be listed here.
Abstract

The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders.

Citing Articles

Dendritic growth and synaptic organization from activity-independent cues and local activity-dependent plasticity.

Kirchner J, Euler L, Fritz I, Ferreira Castro A, Gjorgjieva J Elife. 2025; 12.

PMID: 39899359 PMC: 11790248. DOI: 10.7554/eLife.87527.


VEGFD signaling balances stability and activity-dependent structural plasticity of dendrites.

Aksan B, Kenkel A, Yan J, Sanchez Romero J, Missirlis D, Mauceri D Cell Mol Life Sci. 2024; 81(1):354.

PMID: 39158743 PMC: 11335284. DOI: 10.1007/s00018-024-05357-2.


Perinatal compromise affects development, form, and function of the hippocampus part two; preclinical studies.

White T, Miller S, Sutherland A, Allison B, Camm E Pediatr Res. 2024; 95(7):1709-1719.

PMID: 38519795 PMC: 11245392. DOI: 10.1038/s41390-024-03144-0.


Role of a Pdlim5:PalmD complex in directing dendrite morphology.

Srivastava Y, Donta M, Mireles L, Paulucci-Holthauzen A, Waxham M, McCrea P Front Cell Neurosci. 2024; 18:1315941.

PMID: 38414752 PMC: 10896979. DOI: 10.3389/fncel.2024.1315941.


MBL-1 and EEL-1 affect the splicing and protein levels of MEC-3 to control dendrite complexity.

Xie J, Zou W, Tugizova M, Shen K, Wang X PLoS Genet. 2023; 19(9):e1010941.

PMID: 37729192 PMC: 10511122. DOI: 10.1371/journal.pgen.1010941.


References
1.
Craig A, Banker G . Neuronal polarity. Annu Rev Neurosci. 1994; 17:267-310. DOI: 10.1146/annurev.ne.17.030194.001411. View

2.
Hahn M . Aryl hydrocarbon receptors: diversity and evolution. Chem Biol Interact. 2002; 141(1-2):131-60. DOI: 10.1016/s0009-2797(02)00070-4. View

3.
Ye B, Zhang Y, Song W, Younger S, Jan L, Jan Y . Growing dendrites and axons differ in their reliance on the secretory pathway. Cell. 2007; 130(4):717-29. PMC: 2020851. DOI: 10.1016/j.cell.2007.06.032. View

4.
Ramos B, Valin A, Sun X, Gill G . Sp4-dependent repression of neurotrophin-3 limits dendritic branching. Mol Cell Neurosci. 2009; 42(2):152-9. PMC: 2727929. DOI: 10.1016/j.mcn.2009.06.008. View

5.
Lee T, Luo L . Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron. 1999; 22(3):451-61. DOI: 10.1016/s0896-6273(00)80701-1. View