» Articles » PMID: 2424516

Vibrational Analysis of the Structure of Gramicidin A. I. Normal Mode Analysis

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1986 Jun 1
PMID 2424516
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Normal mode frequencies have been calculated for single-stranded beta 4.4 and beta 6.3 and for double-stranded increases decreases beta 5.6, increases decreases beta 7.2, increases increases beta 5.6, and increases increases beta 7.2 helices that are possible models for the structure of gramicidin A. The force field used in the calculations is one that reproduces the frequencies of model polypeptide chain structures to about +/- 5 cm-1, and is therefore expected to provide meaningful distinctions between these conformations. The calculations predict significant differences in the infrared and Raman spectra of these beta-helices, suggesting that they should be identifiable from their spectra (which is shown in the following paper to be the case). The most sensitive region is that of the amide I frequencies, where the predicted patterns of intense infrared mode, infrared splittings, and intense Raman mode provide a characteristic identification of each of the above structures.

Citing Articles

Peptide model helices in lipid membranes: insertion, positioning, and lipid response on aggregation studied by X-ray scattering.

Schneggenburger P, Beerlink A, Weinhausen B, Salditt T, Diederichsen U Eur Biophys J. 2010; 40(4):417-36.

PMID: 21181143 PMC: 3070074. DOI: 10.1007/s00249-010-0645-4.


Orientation and lipid-peptide interactions of gramicidin A in lipid membranes: polarized attenuated total reflection infrared spectroscopy and spin-label electron spin resonance.

Kota Z, Pali T, Marsh D Biophys J. 2004; 86(3):1521-31.

PMID: 14990479 PMC: 1303987. DOI: 10.1016/S0006-3495(04)74220-4.


Spectroscopic [correction of eSpectroscopic] and structural properties of valine gramicidin A in monolayers at the air-water interface.

Lavoie H, Blaudez D, Vaknin D, Desbat B, Ocko B, Salesse C Biophys J. 2002; 83(6):3558-69.

PMID: 12496123 PMC: 1302431. DOI: 10.1016/s0006-3495(02)75356-3.


Modulation of concentration fluctuations in phase-separated lipid membranes by polypeptide insertion.

Fahsel S, Zein M, Hazlet T, Gratton E, Winter R Biophys J. 2002; 83(1):334-44.

PMID: 12080124 PMC: 1302151. DOI: 10.1016/S0006-3495(02)75173-4.


Polarization-modulated FTIR spectroscopy of lipid/gramicidin monolayers at the air/water interface.

Ulrich W, Vogel H Biophys J. 1999; 76(3):1639-47.

PMID: 10049344 PMC: 1300140. DOI: 10.1016/S0006-3495(99)77323-6.


References
1.
Wallace B . Ion-bond forms of the gramicidin a transmembrane channel. Biophys J. 2009; 45(1):114-6. PMC: 1435275. DOI: 10.1016/S0006-3495(84)84131-4. View

2.
Abe Y, Krimm S . Normal vibrations of crystalline polyglycine I. Biopolymers. 1972; 11(9):1817-39. DOI: 10.1002/bip.1972.360110905. View

3.
Sengupta P, Krimm S . Vibrational analysis of peptides, polypeptides, and proteins. XXXII. alpha-Poly(L-glutamic acid). Biopolymers. 1985; 24(8):1479-91. DOI: 10.1002/bip.360240805. View

4.
Ramachnandran G, Chandrasekaran R . Conformation of peptide chains containing both L- & D-residues. I. Helical structures with alternating L- & D-residues with special reference to the LD-ribbon & the LD-helices. Indian J Biochem Biophys. 1972; 9(1):1-11. View

5.
Veatch W, Mathies R, Eisenberg M, Stryer L . Simultaneous fluorescence and conductance studies of planar bilayer membranes containing a highly active and fluorescent analog of gramicidin A. J Mol Biol. 1975; 99(1):75-92. DOI: 10.1016/s0022-2836(75)80160-4. View