» Articles » PMID: 2419835

Identification and Nucleotide Sequence of the Promoter Region of the Bacillus Subtilis Gluconate Operon

Overview
Specialty Biochemistry
Date 1986 Feb 11
PMID 2419835
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

The nucleotide sequence (742 bp) of the promoter region of the Bacillus subtilis gluconate (gnt) operon is presented. Nuclease Sl mapping revealed the start point of the transcription and suggested that the expression of this operon is probably regulated at the transcriptional level. The sequences of the -35 and -10 regions suggested that RNA polymerase possessing sigma-43 may recognize this structure. The 223 bp fragment containing 100 bp upstream from the transcription start site actually exhibited a promoter activity when cloned in a promoter probe vector of pPL603B. This promoter activity was highly derepressed and although still under catabolite repression. The fragment on a high copy plasmid could titrate a regulator of the gnt operon so that the expression of the operon on the host chromosome also became derepressed.

Citing Articles

Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum.

Letek M, Valbuena N, Ramos A, Ordonez E, Gil J, Mateos L J Bacteriol. 2005; 188(2):409-23.

PMID: 16385030 PMC: 1347311. DOI: 10.1128/JB.188.2.409-423.2006.


Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis.

Miwa Y, Nakata A, Ogiwara A, Yamamoto M, Fujita Y Nucleic Acids Res. 2000; 28(5):1206-10.

PMID: 10666464 PMC: 102602. DOI: 10.1093/nar/28.5.1206.


Cloning, sequencing, and analysis of a gene cluster from Chelatobacter heintzii ATCC 29600 encoding nitrilotriacetate monooxygenase and NADH:flavin mononucleotide oxidoreductase.

Xu Y, Mortimer M, Fisher T, Kahn M, Brockman F, Xun L J Bacteriol. 1997; 179(4):1112-6.

PMID: 9023192 PMC: 178806. DOI: 10.1128/jb.179.4.1112-1116.1997.


Cloning and characterization of the genes encoding nitrilotriacetate monooxygenase of Chelatobacter heintzii ATCC 29600.

Knobel H, Egli T, van der Meer J J Bacteriol. 1996; 178(21):6123-32.

PMID: 8892809 PMC: 178480. DOI: 10.1128/jb.178.21.6123-6132.1996.


Three overlapping lct genes involved in L-lactate utilization by Escherichia coli.

Dong J, Taylor J, Latour D, Iuchi S, Lin E J Bacteriol. 1993; 175(20):6671-8.

PMID: 8407843 PMC: 206779. DOI: 10.1128/jb.175.20.6671-6678.1993.


References
1.
Setlow P . Inability of detect cyclic AMP in vegetative or sporulating cells or dormant spores of Bacillus megaterium. Biochem Biophys Res Commun. 1973; 52(2):365-72. DOI: 10.1016/0006-291x(73)90720-1. View

2.
Gitt M, Wang L, Doi R . A strong sequence homology exists between the major RNA polymerase sigma factors of Bacillus subtilis and Escherichia coli. J Biol Chem. 1985; 260(12):7178-85. View

3.
Tinoco Jr I, Borer P, Dengler B, Levin M, Uhlenbeck O, Crothers D . Improved estimation of secondary structure in ribonucleic acids. Nat New Biol. 1973; 246(150):40-1. DOI: 10.1038/newbio246040a0. View

4.
Dickson R, Abelson J, Barnes W, Reznikoff W . Genetic regulation: the Lac control region. Science. 1975; 187(4171):27-35. DOI: 10.1126/science.1088926. View

5.
Shaw W . Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol. 1975; 43:737-55. DOI: 10.1016/0076-6879(75)43141-x. View