» Articles » PMID: 24180558

DCE@urLAB: a Dynamic Contrast-enhanced MRI Pharmacokinetic Analysis Tool for Preclinical Data

Overview
Publisher Biomed Central
Specialty Biology
Date 2013 Nov 5
PMID 24180558
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Background: DCE@urLAB is a software application for analysis of dynamic contrast-enhanced magnetic resonance imaging data (DCE-MRI). The tool incorporates a friendly graphical user interface (GUI) to interactively select and analyze a region of interest (ROI) within the image set, taking into account the tissue concentration of the contrast agent (CA) and its effect on pixel intensity.

Results: Pixel-wise model-based quantitative parameters are estimated by fitting DCE-MRI data to several pharmacokinetic models using the Levenberg-Marquardt algorithm (LMA). DCE@urLAB also includes the semi-quantitative parametric and heuristic analysis approaches commonly used in practice. This software application has been programmed in the Interactive Data Language (IDL) and tested both with publicly available simulated data and preclinical studies from tumor-bearing mouse brains.

Conclusions: A user-friendly solution for applying pharmacokinetic and non-quantitative analysis DCE-MRI in preclinical studies has been implemented and tested. The proposed tool has been specially designed for easy selection of multi-pixel ROIs. A public release of DCE@urLAB, together with the open source code and sample datasets, is available at http://www.die.upm.es/im/archives/DCEurLAB/.

Citing Articles

Deuterium metabolic imaging phenotypes mouse glioblastoma heterogeneity through glucose turnover kinetics.

Simoes R, Henriques R, Olesen J, Cardoso B, Fernandes F, Monteiro M Elife. 2025; 13.

PMID: 40035743 PMC: 11879113. DOI: 10.7554/eLife.100570.


ImmunoPET imaging of TIGIT in the glioma microenvironment.

Vincze S, Jaswal A, Frederico S, Nisnboym M, Li B, Xiong Z Sci Rep. 2024; 14(1):5305.

PMID: 38438420 PMC: 10912309. DOI: 10.1038/s41598-024-55296-y.


Therapeutic effect of 7 nicotinic receptor activation after ischemic stroke in rats.

Aguado L, Joya A, Garbizu M, Plaza-Garcia S, Iglesias L, Hernandez M J Cereb Blood Flow Metab. 2023; 43(8):1301-1316.

PMID: 36916034 PMC: 10369150. DOI: 10.1177/0271678X231161207.


qMRI-BIDS: An extension to the brain imaging data structure for quantitative magnetic resonance imaging data.

Karakuzu A, Appelhoff S, Auer T, Boudreau M, Feingold F, Khan A Sci Data. 2022; 9(1):517.

PMID: 36002444 PMC: 9402561. DOI: 10.1038/s41597-022-01571-4.


Metal-Free Radical Dendrimers as MRI Contrast Agents for Glioblastoma Diagnosis: and Approaches.

Zhang S, Lloveras V, Lope-Piedrafita S, Calero-Perez P, Wu S, Candiota A Biomacromolecules. 2022; 23(7):2767-2777.

PMID: 35749573 PMC: 9277593. DOI: 10.1021/acs.biomac.2c00088.


References
1.
Wang H, Li J, Chen F, De Keyzer F, Yu J, Feng Y . Morphological, functional and metabolic imaging biomarkers: assessment of vascular-disrupting effect on rodent liver tumours. Eur Radiol. 2010; 20(8):2013-26. DOI: 10.1007/s00330-010-1743-5. View

2.
Weidensteiner C, Rausch M, McSheehy P, Allegrini P . Quantitative dynamic contrast-enhanced MRI in tumor-bearing rats and mice with inversion recovery TrueFISP and two contrast agents at 4.7 T. J Magn Reson Imaging. 2006; 24(3):646-56. DOI: 10.1002/jmri.20676. View

3.
Ahearn T, Staff R, Redpath T, Semple S . The use of the Levenberg-Marquardt curve-fitting algorithm in pharmacokinetic modelling of DCE-MRI data. Phys Med Biol. 2005; 50(9):N85-92. DOI: 10.1088/0031-9155/50/9/N02. View

4.
Weiss W, Burns M, Hackett C, Aldape K, Hill J, Kuriyama H . Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res. 2003; 63(7):1589-95. View

5.
Port R, Knopp M, Hoffmann U, Milker-Zabel S, Brix G . Multicompartment analysis of gadolinium chelate kinetics: blood-tissue exchange in mammary tumors as monitored by dynamic MR imaging. J Magn Reson Imaging. 1999; 10(3):233-41. DOI: 10.1002/(sici)1522-2586(199909)10:3<233::aid-jmri3>3.0.co;2-m. View