» Articles » PMID: 24164353

Actin Dynamics in Growth Cone Motility and Navigation

Overview
Journal J Neurochem
Specialties Chemistry
Neurology
Date 2013 Oct 30
PMID 24164353
Citations 122
Authors
Affiliations
Soon will be listed here.
Abstract

Motile growth cones lead growing axons through developing tissues to synaptic targets. These behaviors depend on the organization and dynamics of actin filaments that fill the growth cone leading margin [peripheral (P-) domain]. Actin filament organization in growth cones is regulated by actin-binding proteins that control all aspects of filament assembly, turnover, interactions with other filaments and cytoplasmic components, and participation in producing mechanical forces. Actin filament polymerization drives protrusion of sensory filopodia and lamellipodia, and actin filament connections to the plasma membrane link the filament network to adhesive contacts of filopodia and lamellipodia with other surfaces. These contacts stabilize protrusions and transduce mechanical forces generated by actomyosin activity into traction that pulls an elongating axon along the path toward its target. Adhesive ligands and extrinsic guidance cues bind growth cone receptors and trigger signaling activities involving Rho GTPases, kinases, phosphatases, cyclic nucleotides, and [Ca++] fluxes. These signals regulate actin-binding proteins to locally modulate actin polymerization, interactions, and force transduction to steer the growth cone leading margin toward the sources of attractive cues and away from repellent guidance cues.

Citing Articles

Optogenetic control of receptor-mediated growth cone dynamics in neurons.

Tymanskyj S, Escorce A, Karthikeyan S, Ma L Mol Biol Cell. 2024; 36(2):br5.

PMID: 39705378 PMC: 11809317. DOI: 10.1091/mbc.E23-07-0268.


Interrogating the Molecular Clutch in Neuronal Growth Cones: Measuring Traction Forces, F-actin Retrograde Flow, and Point Contact Demographics.

Ghate K, Mutalik S, Ghose A Methods Mol Biol. 2024; 2831:251-264.

PMID: 39134855 DOI: 10.1007/978-1-0716-3969-6_17.


Excessive endometrial PlGF- Rac1 signalling underlies endometrial cell stiffness linked to pre-eclampsia.

Raja Xavier J, Rianna C, Hellwich E, Nikolou I, Lankapalli A, Brucker S Commun Biol. 2024; 7(1):530.

PMID: 38704457 PMC: 11069541. DOI: 10.1038/s42003-024-06220-7.


Single-molecule tracking of myelin basic protein during oligodendrocyte differentiation.

Rassul S, Otsu M, Styles I, Neely R, Fulton D Biol Imaging. 2024; 3:e24.

PMID: 38510175 PMC: 10951920. DOI: 10.1017/S2633903X23000259.


Nerve Regeneration and Gait Function Recovery with Implantation of Glucose/Mannose Conduits Using a Rat Model: Efficacy of Glucose/Mannose as a New Neurological Guidance Material.

Yamamoto O, Saito R, Ohseki Y, Hoshino A Bioengineering (Basel). 2024; 11(2).

PMID: 38391643 PMC: 10886352. DOI: 10.3390/bioengineering11020157.


References
1.
Kaczmarek J, Riccio A, Clapham D . Calpain cleaves and activates the TRPC5 channel to participate in semaphorin 3A-induced neuronal growth cone collapse. Proc Natl Acad Sci U S A. 2012; 109(20):7888-92. PMC: 3356680. DOI: 10.1073/pnas.1205869109. View

2.
Li Y, Jia Y, Cui K, Li N, Zheng Z, Wang Y . Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature. 2005; 434(7035):894-8. DOI: 10.1038/nature03477. View

3.
Franco S, Rodgers M, Perrin B, Han J, Bennin D, Critchley D . Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat Cell Biol. 2004; 6(10):977-83. DOI: 10.1038/ncb1175. View

4.
Letourneau P . Cell-to-substratum adhesion and guidance of axonal elongation. Dev Biol. 1975; 44(1):92-101. DOI: 10.1016/0012-1606(75)90379-6. View

5.
Suter D, Errante L, Belotserkovsky V, Forscher P . The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling. J Cell Biol. 1998; 141(1):227-40. PMC: 2132711. DOI: 10.1083/jcb.141.1.227. View