How Do Transporters Couple Solute Movements?
Overview
Molecular Biology
Authors
Affiliations
Abstract The availability of high-resolution atomic structures for transport proteins provides unprecedented opportunities for understanding their mechanism of action. The details of conformational change can be deduced from these structures, especially when multiple conformations are available. However, the singular ability of transporters to couple the movement of one solute to that of another requires even more information than what is supplied by a crystal structure. This short commentary discusses how recent biochemical and biophysical studies are beginning to reveal how solute coupling is achieved.
Li M, Zhang X, Chen S, Liu H, Zhang Y Int J Mol Sci. 2023; 24(23).
PMID: 38069433 PMC: 10707687. DOI: 10.3390/ijms242317112.
Wang J, Liu H, Zhang Y Int J Mol Sci. 2022; 23(24).
PMID: 36555800 PMC: 9781295. DOI: 10.3390/ijms232416157.
General principles of secondary active transporter function.
Beckstein O, Naughton F Biophys Rev (Melville). 2022; 3(1):011307.
PMID: 35434715 PMC: 8984959. DOI: 10.1063/5.0047967.
Two Lignan Glycosides from Durazz. Noncompetitively Inhibit Serotonin Transporter.
Huang B, Liu H, Wu Y, Li C, Tang Q, Zhang Y Pharmaceuticals (Basel). 2022; 15(3).
PMID: 35337141 PMC: 8954383. DOI: 10.3390/ph15030344.
Molecular Mechanism of Nramp-Family Transition Metal Transport.
Bozzi A, Gaudet R J Mol Biol. 2021; 433(16):166991.
PMID: 33865868 PMC: 8292206. DOI: 10.1016/j.jmb.2021.166991.