» Articles » PMID: 24126521

New Frontiers in Type III Secretion Biology: the Chlamydia Perspective

Overview
Journal Infect Immun
Date 2013 Oct 16
PMID 24126521
Citations 59
Authors
Affiliations
Soon will be listed here.
Abstract

Members of the order Chlamydiales comprise a group of exquisitely evolved parasites of eukaryotic hosts that extends from single-celled amoeba to mammals. The most notable are human pathogens and include the agent of oculogenital disease Chlamydia trachomatis, the respiratory pathogen C. pneumoniae, and the zoonotic agent C. psittaci. All of these species are obligate intracellular bacteria that develop within parasitophorous vesicles termed inclusions. This demanding lifestyle necessitates orchestrated entry into nonphagocytic cells, creation of a privileged intracellular niche, and subversion of potent host defenses. All chlamydial genomes contain the coding capacity for a nonflagellar type III secretion system, and this mechanism has arisen as an essential contributor to chlamydial virulence. The emergence of tractable approaches to the genetic manipulation of chlamydiae raises the possibility of explosive progress in understanding this important contributor to chlamydial pathogenesis. This minireview considers challenges and recent advances that have revealed how chlamydiae have maintained conserved aspects of T3S while exploiting diversification to yield a system that exerts a fundamental role in the unique biology of Chlamydia species.

Citing Articles

CT584 Is Not a Protective Vaccine Antigen against Respiratory Chlamydial Challenge in Mice.

Hoang-Phou S, Pal S, Slepenkin A, Abisoye-Ogunniyun A, Zhang Y, Gilmore S Vaccines (Basel). 2024; 12(10).

PMID: 39460301 PMC: 11512284. DOI: 10.3390/vaccines12101134.


The N-terminus of the effector Tarp engages the host Hippo pathway.

Aranjuez G, Patel O, Patel D, Jewett T bioRxiv. 2024; .

PMID: 39314337 PMC: 11419093. DOI: 10.1101/2024.09.12.612603.


Insights into Chlamydia Development and Host Cells Response.

Yang S, Zeng J, Yu J, Sun R, Tuo Y, Bai H Microorganisms. 2024; 12(7).

PMID: 39065071 PMC: 11279054. DOI: 10.3390/microorganisms12071302.


Evaluation in mice of cell-free produced CT584 as a Chlamydia vaccine antigen.

Hoang-Phou S, Pal S, Slepenkin A, Abisoye-Ogunniyun A, Zhang Y, Gilmore S bioRxiv. 2024; .

PMID: 38895407 PMC: 11185655. DOI: 10.1101/2024.06.04.597210.


Molecular pathogenesis of .

Jury B, Fleming C, Huston W, Luu L Front Cell Infect Microbiol. 2023; 13:1281823.

PMID: 37920447 PMC: 10619736. DOI: 10.3389/fcimb.2023.1281823.


References
1.
Dehoux P, Flores R, Dauga C, Zhong G, Subtil A . Multi-genome identification and characterization of chlamydiae-specific type III secretion substrates: the Inc proteins. BMC Genomics. 2011; 12:109. PMC: 3048545. DOI: 10.1186/1471-2164-12-109. View

2.
Dean P . Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev. 2011; 35(6):1100-25. DOI: 10.1111/j.1574-6976.2011.00271.x. View

3.
Pennini M, Perrinet S, Dautry-Varsat A, Subtil A . Histone methylation by NUE, a novel nuclear effector of the intracellular pathogen Chlamydia trachomatis. PLoS Pathog. 2010; 6(7):e1000995. PMC: 2904774. DOI: 10.1371/journal.ppat.1000995. View

4.
Hobolt-Pedersen A, Christiansen G, Timmerman E, Gevaert K, Birkelund S . Identification of Chlamydia trachomatis CT621, a protein delivered through the type III secretion system to the host cell cytoplasm and nucleus. FEMS Immunol Med Microbiol. 2009; 57(1):46-58. PMC: 2784215. DOI: 10.1111/j.1574-695X.2009.00581.x. View

5.
Muschiol S, Normark S, Henriques-Normark B, Subtil A . Small molecule inhibitors of the Yersinia type III secretion system impair the development of Chlamydia after entry into host cells. BMC Microbiol. 2009; 9:75. PMC: 2679026. DOI: 10.1186/1471-2180-9-75. View