» Articles » PMID: 24123785

Loss of Spastin Function Results in Disease-specific Axonal Defects in Human Pluripotent Stem Cell-based Models of Hereditary Spastic Paraplegia

Overview
Journal Stem Cells
Date 2013 Oct 15
PMID 24123785
Citations 85
Authors
Affiliations
Soon will be listed here.
Abstract

Human neuronal models of hereditary spastic paraplegias (HSP) that recapitulate disease-specific axonal pathology hold the key to understanding why certain axons degenerate in patients and to developing therapies. SPG4, the most common form of HSP, is caused by autosomal dominant mutations in the SPAST gene, which encodes the microtubule-severing ATPase spastin. Here, we have generated a human neuronal model of SPG4 by establishing induced pluripotent stem cells (iPSCs) from an SPG4 patient and differentiating these cells into telencephalic glutamatergic neurons. The SPG4 neurons displayed a significant increase in axonal swellings, which stained strongly for mitochondria and tau, indicating the accumulation of axonal transport cargoes. In addition, mitochondrial transport was decreased in SPG4 neurons, revealing that these patient iPSC-derived neurons recapitulate disease-specific axonal phenotypes. Interestingly, spastin protein levels were significantly decreased in SPG4 neurons, supporting a haploinsufficiency mechanism. Furthermore, cortical neurons derived from spastin-knockdown human embryonic stem cells (hESCs) exhibited similar axonal swellings, confirming that the axonal defects can be caused by loss of spastin function. These spastin-knockdown hESCs serve as an additional model for studying HSP. Finally, levels of stabilized acetylated-tubulin were significantly increased in SPG4 neurons. Vinblastine, a microtubule-destabilizing drug, rescued this axonal swelling phenotype in neurons derived from both SPG4 iPSCs and spastin-knockdown hESCs. Thus, this study demonstrates the successful establishment of human pluripotent stem cell-based neuronal models of SPG4, which will be valuable for dissecting the pathogenic cellular mechanisms and screening compounds to rescue the axonal degeneration in HSP.

Citing Articles

Tubulin glutamylation regulates axon guidance via the selective tuning of microtubule-severing enzymes.

Ten Martin D, Jardin N, Vougny J, Giudicelli F, Gasmi L, Berbee N EMBO J. 2024; 44(1):107-140.

PMID: 39613968 PMC: 11695996. DOI: 10.1038/s44318-024-00307-x.


Blood expression of NADK2 as a diagnostic biomarker for sciatica.

Wang X, Ren Z, Wang B, Shi J, Liu J, Wang Y iScience. 2024; 27(11):111196.

PMID: 39569374 PMC: 11576402. DOI: 10.1016/j.isci.2024.111196.


Spastin accumulation and motor neuron defects caused by a novel SPAST splice site mutation.

Luo M, Wang Y, Liang J, Wan X J Transl Med. 2024; 22(1):872.

PMID: 39334479 PMC: 11429824. DOI: 10.1186/s12967-024-05669-8.


Spastin regulates ER-mitochondrial contact sites and mitochondrial homeostasis.

Raby A, Missiroli S, Sanatine P, Langui D, Pansiot J, Beaude N iScience. 2024; 27(9):110683.

PMID: 39252960 PMC: 11382127. DOI: 10.1016/j.isci.2024.110683.


Intragenic CNVs Lead to Hereditary Spastic Paraplegia via a Haploinsufficiency Mechanism.

Elert-Dobkowska E, Stepniak I, Radziwonik-Fraczyk W, Jahic A, Beetz C, Sulek A Int J Mol Sci. 2024; 25(9).

PMID: 38732227 PMC: 11084448. DOI: 10.3390/ijms25095008.


References
1.
Sharp D, Ross J . Microtubule-severing enzymes at the cutting edge. J Cell Sci. 2012; 125(Pt 11):2561-9. PMC: 3403230. DOI: 10.1242/jcs.101139. View

2.
Ebert A, Yu J, Rose Jr F, Mattis V, Lorson C, Thomson J . Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2008; 457(7227):277-80. PMC: 2659408. DOI: 10.1038/nature07677. View

3.
Millecamps S, Julien J . Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci. 2013; 14(3):161-76. DOI: 10.1038/nrn3380. View

4.
Errico A, Ballabio A, Rugarli E . Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum Mol Genet. 2002; 11(2):153-63. DOI: 10.1093/hmg/11.2.153. View

5.
Connell J, Lindon C, Luzio J, Reid E . Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic. 2008; 10(1):42-56. PMC: 2709849. DOI: 10.1111/j.1600-0854.2008.00847.x. View