» Articles » PMID: 24067303

Assignment of the Q-bands of the Chlorophylls: Coherence Loss Via Qx - Qy Mixing

Overview
Journal Sci Rep
Specialty Science
Date 2013 Sep 27
PMID 24067303
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

We provide a new and definitive spectral assignment for the absorption, emission, high-resolution fluorescence excitation, linear dichroism, and/or magnetic circular dichroism spectra of 32 chlorophyllides in various environments. This encompases all data used to justify previous assignments and provides a simple interpretation of unexplained complex decoherence phenomena associated with Qx → Qy relaxation. Whilst most chlorophylls conform to the Gouterman model and display two independent transitions Qx (S2) and Qy (S1), strong vibronic coupling inseparably mixes these states in chlorophyll-a. This spreads x-polarized absorption intensity over the entire Q-band system to influence all exciton-transport, relaxation and coherence properties of chlorophyll-based photosystems. The fraction of the total absorption intensity attributed to Qx ranges between 7% and 33%, depending on chlorophyllide and coordination, and is between 10% and 25% for chlorophyll-a. CAM-B3LYP density-functional-theory calculations of the band origins, relative intensities, vibrational Huang-Rhys factors, and vibronic coupling strengths fully support this new assignment.

Citing Articles

Deciphering between enhanced light emission and absorption in multi-mode porphyrin cavity polariton samples.

Odewale E, Avramenko A, Rury A Nanophotonics. 2024; 13(14):2695-2706.

PMID: 39678670 PMC: 11636455. DOI: 10.1515/nanoph-2023-0748.


Reassessing the role and lifetime of Q in the energy transfer dynamics of chlorophyll .

Keil E, Kumar A, Bauml L, Reiter S, Thyrhaug E, Moser S Chem Sci. 2024; 16(4):1684-1695.

PMID: 39629486 PMC: 11610765. DOI: 10.1039/d4sc06441k.


Thermal site energy fluctuations in photosystem I: new insights from MD/QM/MM calculations.

Reiter S, Kiss F, Hauer J, de Vivie-Riedle R Chem Sci. 2023; 14(12):3117-3131.

PMID: 36970098 PMC: 10034153. DOI: 10.1039/d2sc06160k.


Femtosecond anisotropy excitation spectroscopy to disentangle the Q and Q absorption in chlorophyll .

Zahn C, Stensitzki T, Heyne K Chem Sci. 2022; 13(42):12426-12432.

PMID: 36382286 PMC: 9629125. DOI: 10.1039/d2sc03538c.


Quasiparticle Self-Consistent -Bethe-Salpeter Equation Calculations for Large Chromophoric Systems.

Forster A, Visscher L J Chem Theory Comput. 2022; 18(11):6779-6793.

PMID: 36201788 PMC: 9648197. DOI: 10.1021/acs.jctc.2c00531.


References
1.
Muh F, Madjet M, Renger T . Structure-based simulation of linear optical spectra of the CP43 core antenna of photosystem II. Photosynth Res. 2011; 111(1-2):87-101. DOI: 10.1007/s11120-011-9675-8. View

2.
Schlau-Cohen G, Ishizaki A, Calhoun T, Ginsberg N, Ballottari M, Bassi R . Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nat Chem. 2012; 4(5):389-95. DOI: 10.1038/nchem.1303. View

3.
Cai Z, Crossley M, Reimers J, Kobayashi R, Amos R . Density functional theory for charge transfer: the nature of the N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations. J Phys Chem B. 2006; 110(31):15624-32. DOI: 10.1021/jp063376t. View

4.
Novoderezhkin V, Dekker J, van Grondelle R . Mixing of exciton and charge-transfer states in Photosystem II reaction centers: modeling of Stark spectra with modified Redfield theory. Biophys J. 2007; 93(4):1293-311. PMC: 1929038. DOI: 10.1529/biophysj.106.096867. View

5.
Krausz E, Cox N, Arskold S . Spectral characteristics of PS II reaction centres: as isolated preparations and when integral to PS II core complexes. Photosynth Res. 2008; 98(1-3):207-17. DOI: 10.1007/s11120-008-9328-8. View