» Articles » PMID: 31952446

How the Protein Environment Can Tune the Energy, the Coupling, and the Ultrafast Dynamics of Interacting Chlorophylls: The Example of the Water-Soluble Chlorophyll Protein

Overview
Specialty Chemistry
Date 2020 Jan 19
PMID 31952446
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

The interplay between active molecules and the protein environment in light-harvesting complexes tunes the photophysics and the dynamical properties of pigment-protein complexes in a subtle way, which is not fully understood. Here we characterized the photophysics and the ultrafast dynamics of four variants of the water-soluble chlorophyll protein (WSCP) as an ideal model system to study the behavior of strongly interacting chlorophylls. We found that when coordinated by the WSCP protein, the presence of the formyl group in chlorophyll replacing the methyl group in chlorophyll strongly affects the exciton energy and the dynamics of the system, opening up the possibility of tuning the photophysics and the transport properties of multichromophores by engineering specific interactions with the surroundings.

Citing Articles

Development of a TSR-based method for understanding structural relationships of cofactors and local environments in photosystem I.

Luo L, Milon T, Tandoh E, Galdamez W, Chistoserdov A, Yu J BMC Bioinformatics. 2025; 26(1):15.

PMID: 39810075 PMC: 11731568. DOI: 10.1186/s12859-025-06038-y.


Tuning by Hydrogen Bonding in Photosynthesis.

Timpmann K, Ratsep M, Jalviste E, Freiberg A J Phys Chem B. 2024; 128(38):9120-9131.

PMID: 39291755 PMC: 11440610. DOI: 10.1021/acs.jpcb.4c04405.


Dominant role of excitons in photosynthetic color-tuning and light-harvesting.

Timpmann K, Ratsep M, Freiberg A Front Chem. 2023; 11:1231431.

PMID: 37908232 PMC: 10613661. DOI: 10.3389/fchem.2023.1231431.


The Role of H-Bonds in the Excited-State Properties of Multichromophoric Systems: Static and Dynamic Aspects.

Fresch E, Collini E Molecules. 2023; 28(8).

PMID: 37110786 PMC: 10141795. DOI: 10.3390/molecules28083553.


A Comprehensive Approach to Exciton Delocalization and Energy Transfer.

Giavazzi D, Saseendran S, Di Maiolo F, Painelli A J Chem Theory Comput. 2022; .

PMID: 36563008 PMC: 9878730. DOI: 10.1021/acs.jctc.2c00980.


References
1.
Adolphs J, Renger T . How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys J. 2006; 91(8):2778-97. PMC: 1578489. DOI: 10.1529/biophysj.105.079483. View

2.
Morosinotto T, Breton J, Bassi R, Croce R . The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I. J Biol Chem. 2003; 278(49):49223-9. DOI: 10.1074/jbc.M309203200. View

3.
McLuskey K, Prince S, Cogdell R, Isaacs N . The crystallographic structure of the B800-820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila strain 7050. Biochemistry. 2001; 40(30):8783-9. DOI: 10.1021/bi010309a. View

4.
Witt H, Schlodder E, Teutloff C, Niklas J, Bordignon E, Carbonera D . Hydrogen bonding to P700: site-directed mutagenesis of threonine A739 of photosystem I in Chlamydomonas reinhardtii. Biochemistry. 2002; 41(27):8557-69. DOI: 10.1021/bi025822i. View

5.
Bolzonello L, Polo A, Volpato A, Meneghin E, Cordaro M, Trapani M . Two-Dimensional Electronic Spectroscopy Reveals Dynamics and Mechanisms of Solvent-Driven Inertial Relaxation in Polar BODIPY Dyes. J Phys Chem Lett. 2018; 9(5):1079-1085. PMC: 5836106. DOI: 10.1021/acs.jpclett.7b03393. View