» Articles » PMID: 24066054

Fast QRS Detection with an Optimized Knowledge-based Method: Evaluation on 11 Standard ECG Databases

Overview
Journal PLoS One
Date 2013 Sep 26
PMID 24066054
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

The current state-of-the-art in automatic QRS detection methods show high robustness and almost negligible error rates. In return, the methods are usually based on machine-learning approaches that require sufficient computational resources. However, simple-fast methods can also achieve high detection rates. There is a need to develop numerically efficient algorithms to accommodate the new trend towards battery-driven ECG devices and to analyze long-term recorded signals in a time-efficient manner. A typical QRS detection method has been reduced to a basic approach consisting of two moving averages that are calibrated by a knowledge base using only two parameters. In contrast to high-accuracy methods, the proposed method can be easily implemented in a digital filter design.

Citing Articles

QRS detection in single-lead, telehealth electrocardiogram signals: Benchmarking open-source algorithms.

Kristof F, Kapsecker M, Nissen L, Brimicombe J, Cowie M, Ding Z PLOS Digit Health. 2024; 3(8):e0000538.

PMID: 39137171 PMC: 7617317. DOI: 10.1371/journal.pdig.0000538.


QRS Detector Performance Evaluation Aware of Temporal Accuracy and Presence of Noise.

Reklewski W, Miskowicz M, Augustyniak P Sensors (Basel). 2024; 24(5).

PMID: 38475235 PMC: 10934794. DOI: 10.3390/s24051698.


Tracking Cancer: Exploring Heart Rate Variability Patterns by Cancer Location and Progression.

Ben-David K, Wittels H, Wishon M, Lee S, McDonald S, Wittels S Cancers (Basel). 2024; 16(5).

PMID: 38473322 PMC: 10931286. DOI: 10.3390/cancers16050962.


Aberrant brain-heart coupling is associated with the severity of post cardiac arrest brain injury.

Hermann B, Candia-Rivera D, Sharshar T, Gavaret M, Diehl J, Cariou A Ann Clin Transl Neurol. 2024; 11(4):866-882.

PMID: 38243640 PMC: 11021613. DOI: 10.1002/acn3.52000.


Improved diagnostic performance of insertable cardiac monitors by an artificial intelligence-based algorithm.

Crespin E, Rosier A, Ibnouhsein I, Gozlan A, Lazarus A, Laurent G Europace. 2024; 26(1).

PMID: 38170474 PMC: 10787483. DOI: 10.1093/europace/euad375.


References
1.
Li C, Zheng C, Tai C . Detection of ECG characteristic points using wavelet transforms. IEEE Trans Biomed Eng. 1995; 42(1):21-8. DOI: 10.1109/10.362922. View

2.
Ligtenberg A, Kunt M . A robust-digital QRS-detection algorithm for arrhythmia monitoring. Comput Biomed Res. 1983; 16(3):273-86. DOI: 10.1016/0010-4809(83)90027-7. View

3.
Mahmoodabadi S, Ahmadian A, Abolhasani M, Eslami M, Bidgoli J . ECG Feature Extraction Based on Multiresolution Wavelet Transform. Conf Proc IEEE Eng Med Biol Soc. 2007; 2005:3902-5. DOI: 10.1109/IEMBS.2005.1615314. View

4.
Fard P, Moradi M, Tajvidi M . A novel approach in R peak detection using Hybrid Complex Wavelet (HCW). Int J Cardiol. 2007; 124(2):250-3. DOI: 10.1016/j.ijcard.2006.11.236. View

5.
Pan J, Tompkins W . A real-time QRS detection algorithm. IEEE Trans Biomed Eng. 1985; 32(3):230-6. DOI: 10.1109/TBME.1985.325532. View