Szokoli D, Mutschler H
Nucleic Acids Res. 2024; 53(2.
PMID: 39698822
PMC: 11754743.
DOI: 10.1093/nar/gkae1224.
Gmyl A, Agol V
Mol Biol. 2020; 39(4):529-542.
PMID: 32214466
PMC: 7089151.
DOI: 10.1007/s11008-005-0069-x.
Molina-Sanchez M, Toro N
RNA Biol. 2019; 16(7):930-939.
PMID: 30943851
PMC: 6546360.
DOI: 10.1080/15476286.2019.1601379.
Lambowitz A, Zimmerly S
Cold Spring Harb Perspect Biol. 2010; 3(8):a003616.
PMID: 20463000
PMC: 3140690.
DOI: 10.1101/cshperspect.a003616.
Zhuang F, Mastroianni M, White T, Lambowitz A
Proc Natl Acad Sci U S A. 2009; 106(43):18189-94.
PMID: 19833873
PMC: 2775298.
DOI: 10.1073/pnas.0910277106.
The linear form of a group II intron catalyzes efficient autocatalytic reverse splicing, establishing a potential for mobility.
Roitzsch M, Pyle A
RNA. 2009; 15(3):473-82.
PMID: 19168748
PMC: 2657011.
DOI: 10.1261/rna.1392009.
Group II intron-based gene targeting reactions in eukaryotes.
Mastroianni M, Watanabe K, White T, Zhuang F, Vernon J, Matsuura M
PLoS One. 2008; 3(9):e3121.
PMID: 18769669
PMC: 2518211.
DOI: 10.1371/journal.pone.0003121.
Defining functional groups, core structural features and inter-domain tertiary contacts essential for group II intron self-splicing: a NAIM analysis.
Boudvillain M, Pyle A
EMBO J. 1998; 17(23):7091-104.
PMID: 9843513
PMC: 1171056.
DOI: 10.1093/emboj/17.23.7091.
Use of engineered ribozymes to catalyze chimeric gene assembly.
Mikheeva S, Jarrell K
Proc Natl Acad Sci U S A. 1996; 93(15):7486-90.
PMID: 8755500
PMC: 38771.
DOI: 10.1073/pnas.93.15.7486.
The biology of yeast mitochondrial introns.
Pel H, Grivell L
Mol Biol Rep. 1993; 18(1):1-13.
PMID: 8232290
DOI: 10.1007/BF01006890.
Frequent site-specific mit- deletions at cryptic exon-intron junctions in the COX1 gene of yeast mtDNA.
Weiller G
Curr Genet. 1994; 26(5-6):542-5.
PMID: 7874750
DOI: 10.1007/BF00309947.
A simple method for isolation of intact RNA from dried polyacrylamide gels.
Morl M, Schmelzer C
Nucleic Acids Res. 1993; 21(8):2016.
PMID: 7684132
PMC: 309451.
DOI: 10.1093/nar/21.8.2016.
Overexpression of DEAD box protein pMSS116 promotes ATP-dependent splicing of a yeast group II intron in vitro.
Niemer I, Schmelzer C, Borner G
Nucleic Acids Res. 1995; 23(15):2966-72.
PMID: 7659519
PMC: 307137.
Mobile group II introns, DNA circles, reverse transcriptase and senescence (group II introns, transposition, aging, mitochondria, fungi).
Belcour L, Sainsard-Chanet A, Sellem C
Genetica. 1994; 93(1-3):225-8.
PMID: 7529208
DOI: 10.1007/BF01435254.
Differential RNA editing in closely related introns in Oenothera mitochondria.
Lippok B, Brennicke A, Wissinger B
Mol Gen Genet. 1994; 243(1):39-46.
PMID: 7514712
DOI: 10.1007/BF00283874.
Branch-point attack in group II introns is a highly reversible transesterification, providing a potential proofreading mechanism for 5'-splice site selection.
Chin K, Pyle A
RNA. 1995; 1(4):391-406.
PMID: 7493317
PMC: 1482411.
Self-splicing of the mobile group II intron of the filamentous fungus Podospora anserina (COI I1) in vitro.
Schmidt U, Riederer B, Morl M, Schmelzer C, Stahl U
EMBO J. 1990; 9(7):2289-98.
PMID: 2162769
PMC: 551955.
DOI: 10.1002/j.1460-2075.1990.tb07400.x.
Structural requirements for selection of 5'- and 3' splice sites of group II introns.
Wallasch C, Morl M, Niemer I, Schmelzer C
Nucleic Acids Res. 1991; 19(12):3307-14.
PMID: 2062646
PMC: 328327.
DOI: 10.1093/nar/19.12.3307.
Group II intron RNA-catalyzed recombination of RNA in vitro.
Morl M, Schmelzer C
Nucleic Acids Res. 1990; 18(22):6545-51.
PMID: 1701241
PMC: 332608.
DOI: 10.1093/nar/18.22.6545.
Beta-globin transcripts carrying a single intron with three adjacent nucleotides of 5' exon are efficiently spliced in vitro irrespective of intron position or surrounding exon sequences.
Mayeda A, Ohshima Y
Nucleic Acids Res. 1990; 18(16):4671-6.
PMID: 1697673
PMC: 331914.
DOI: 10.1093/nar/18.16.4671.