» Articles » PMID: 24043796

Fe-N2/CO Complexes That Model a Possible Role for the Interstitial C Atom of FeMo-cofactor (FeMoco)

Overview
Specialty Science
Date 2013 Sep 18
PMID 24043796
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

We report here a series of four- and five-coordinate Fe model complexes that feature an axial tri(silyl)methyl ligand positioned trans to a substrate-binding site. This arrangement is used to crudely model a single-belt Fe site of the FeMo-cofactor that might bind N2 at a position trans to the interstitial C atom. Reduction of a trigonal pyramidal Fe(I) complex leads to uptake of N2 and subsequent functionalization furnishes an open-shell Fe-diazenido complex. A related series of five-coordinate Fe-CO complexes stable across three redox states is also described. Spectroscopic, crystallographic, and Density Functional Theory (DFT) studies of these complexes suggest that a decrease in the covalency of the Fe-C(alkyl) interaction occurs upon reduction and substrate binding. This leads to unusually long Fe-C(alkyl) bond distances that reflect an ionic Fe-C bond. The data presented are contextualized in support of a hypothesis wherein modulation of a belt Fe-C interaction in the FeMo-cofactor facilitates substrate binding and reduction.

Citing Articles

Structural evolution of nitrogenase states under alkaline turnover.

Warmack R, Rees D Nat Commun. 2024; 15(1):10472.

PMID: 39622820 PMC: 11612016. DOI: 10.1038/s41467-024-54713-0.


Highly Activated Terminal Carbon Monoxide Ligand in an Iron-Sulfur Cluster Model of FeMco with Intermediate Local Spin State at Fe.

Le L, Joyce J, Oyala P, DeBeer S, Agapie T J Am Chem Soc. 2024; 146(8):5045-5050.

PMID: 38358932 PMC: 10910499. DOI: 10.1021/jacs.3c12025.


Low-Valent Transition Metalate Anions in Synthesis, Small Molecule Activation, and Catalysis.

Landaeta V, Downie T, Wolf R Chem Rev. 2024; 124(4):1323-1463.

PMID: 38354371 PMC: 10906008. DOI: 10.1021/acs.chemrev.3c00121.


Understanding the Electronic Structure Basis for N Binding to FeMoco: A Systematic Quantum Mechanics/Molecular Mechanics Investigation.

Pang Y, Bjornsson R Inorg Chem. 2023; 62(14):5357-5375.

PMID: 36988551 PMC: 10091479. DOI: 10.1021/acs.inorgchem.2c03967.


Ammonia from dinitrogen at ambient conditions by organometallic catalysts.

Bora D, Rahaman Gayen F, Saha B RSC Adv. 2022; 12(52):33567-33583.

PMID: 36505716 PMC: 9682445. DOI: 10.1039/d2ra06156b.


References
1.
Moret M, Peters J . N2 functionalization at iron metallaboratranes. J Am Chem Soc. 2011; 133(45):18118-21. PMC: 3212643. DOI: 10.1021/ja208675p. View

2.
Lancaster K, Roemelt M, Ettenhuber P, Hu Y, Ribbe M, Neese F . X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science. 2011; 334(6058):974-7. PMC: 3800678. DOI: 10.1126/science.1206445. View

3.
Spatzal T, Aksoyoglu M, Zhang L, Andrade S, Schleicher E, Weber S . Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science. 2011; 334(6058):940. PMC: 3268367. DOI: 10.1126/science.1214025. View

4.
Burgess B, Lowe D . Mechanism of Molybdenum Nitrogenase. Chem Rev. 1996; 96(7):2983-3012. DOI: 10.1021/cr950055x. View

5.
Vela J, Cirera J, Smith J, Lachicotte R, Flaschenriem C, Alvarez S . Quantitative geometric descriptions of the belt iron atoms of the iron-molybdenum cofactor of nitrogenase and synthetic iron(II) model complexes. Inorg Chem. 2007; 46(1):60-71. PMC: 2676240. DOI: 10.1021/ic0609148. View