» Articles » PMID: 22564272

EXAFS and NRVS Reveal a Conformational Distortion of the FeMo-cofactor in the MoFe Nitrogenase Propargyl Alcohol Complex

Overview
Journal J Inorg Biochem
Specialty Biochemistry
Date 2012 May 9
PMID 22564272
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

We have used EXAFS and NRVS spectroscopies to examine the structural changes in the FeMo-cofactor active site of the α-70(Ala) variant of Azotobacter vinelandii nitrogenase on binding and reduction of propargyl alcohol (PA). The Mo K-edge near-edge and EXAFS spectra are very similar in the presence and absence of PA, suggesting PA does not bind at Mo. By contrast, Fe EXAFS spectra show a clear and reproducible change in the long Fe-Fe interaction at ~3.7 Å on PA binding with the apparent appearance of a new Fe-Fe interaction at 3.99 Å. An analogous change in the long Mo-Fe 5.1 Å interaction is not seen. The NRVS spectra exclude the possibility of large-scale structural change of the FeMo-cofactor involving breaking the μ(2) Fe-S-Fe bonds of the Fe(6)S(9)X core. The simplest chemically consistent structural change is that the bound form of PA is coordinated at Fe atoms (Fe6 or Fe7) adjacent to the Mo terminus, with a concomitant movement of the Fe away from the central atom X and along the Fe-X bond by about 0.35 Å. This study comprises the first experimental evidence of the conformational changes of the FeMo-cofactor active site on binding a substrate or product.

Citing Articles

Four-Coordinate Fe N and Imido Complexes Supported by a Hemilabile NNC Heteroscorpionate Ligand.

McSkimming A, Thompson N Inorg Chem. 2022; 61(31):12318-12326.

PMID: 35895990 PMC: 9367695. DOI: 10.1021/acs.inorgchem.2c01656.


Thermodynamically Favourable States in the Reaction of Nitrogenase without Dissociation of any Sulfide Ligand.

Jiang H, Ryde U Chemistry. 2022; 28(14):e202103933.

PMID: 35006641 PMC: 9305431. DOI: 10.1002/chem.202103933.


The influences of carbon donor ligands on biomimetic multi-iron complexes for N reduction.

Nagelski A, Fataftah M, Bollmeyer M, McWilliams S, MacMillan S, Mercado B Chem Sci. 2021; 11(47):12710-12720.

PMID: 34094466 PMC: 8163302. DOI: 10.1039/d0sc03447a.


Zeolite-Stabilized Di- and Tetranuclear Molybdenum Sulfide Clusters Form Stable Catalytic Hydrogenation Sites.

Weindl R, Khare R, Kovarik L, Jentys A, Reuter K, Shi H Angew Chem Int Ed Engl. 2021; 60(17):9301-9305.

PMID: 33576131 PMC: 8252740. DOI: 10.1002/anie.202015769.


Preparation and spectroscopic characterization of lyophilized Mo nitrogenase.

Van Stappen C, Decamps L, DeBeer S J Biol Inorg Chem. 2020; 26(1):81-91.

PMID: 33381859 PMC: 8038959. DOI: 10.1007/s00775-020-01838-4.


References
1.
Seefeldt L, Hoffman B, Dean D . Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem. 2009; 78:701-22. PMC: 2814439. DOI: 10.1146/annurev.biochem.78.070907.103812. View

2.
Xiao Y, Koutmos M, Case D, Coucouvanis D, Wang H, Cramer S . Dynamics of an [Fe4S4(SPh)4]2- cluster explored via IR, Raman, and nuclear resonance vibrational spectroscopy (NRVS)-analysis using 36S substitution, DFT calculations, and empirical force fields. Dalton Trans. 2006; (18):2192-201. DOI: 10.1039/b513331a. View

3.
Burgess B, Lowe D . Mechanism of Molybdenum Nitrogenase. Chem Rev. 1996; 96(7):2983-3012. DOI: 10.1021/cr950055x. View

4.
Barney B, Laryukhin M, Igarashi R, Lee H, Dos Santos P, Yang T . Trapping a hydrazine reduction intermediate on the nitrogenase active site. Biochemistry. 2005; 44(22):8030-7. DOI: 10.1021/bi0504409. View

5.
Kastner J, Blochl P . Model for acetylene reduction by nitrogenase derived from density functional theory. Inorg Chem. 2005; 44(13):4568-75. DOI: 10.1021/ic0500311. View