» Articles » PMID: 24014650

Regulation of INOS Gene Transcription by IL-1β and IFN-γ Requires a Coactivator Exchange Mechanism

Overview
Journal Mol Endocrinol
Date 2013 Sep 10
PMID 24014650
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

The proinflammatory cytokines IL-1β and IFN-γ decrease functional islet β-cell mass in part through the increased expression of specific genes, such as inducible nitric oxide synthase (iNOS). Dysregulated iNOS protein accumulation leads to overproduction of nitric oxide, which induces DNA damage, impairs β-cell function, and ultimately diminishes cellular viability. However, the transcriptional mechanisms underlying cytokine-mediated expression of the iNOS gene are not completely understood. Herein, we demonstrated that individual mutations within the proximal and distal nuclear factor-κB sites impaired cytokine-mediated transcriptional activation. Surprisingly, mutating IFN-γ-activated site (GAS) elements in the iNOS gene promoter, which are classically responsive to IFN-γ, modulated transcriptional sensitivity to IL-1β. Transcriptional sensitivity to IL-1β was increased by generation of a consensus GAS element and decreased correspondingly with 1 or 2 nucleotide divergences from the consensus sequence. The nuclear factor-κB subunits p65 and p50 bound to the κB response elements in an IL-1β-dependent manner. IL-1β also promoted binding of serine-phosphorylated signal transducer and activator of transcription-1 (STAT1) (Ser727) but not tyrosine-phosphorylated STAT1 (Tyr701) to GAS elements. However, phosphorylation at Tyr701 was required for IFN-γ to potentiate the IL-1β response. Furthermore, coactivator p300 and coactivator arginine methyltransferase were recruited to the iNOS gene promoter with concomitant displacement of the coactivator CREB-binding protein in cells exposed to IL-1β. Moreover, these coordinated changes in factor recruitment were associated with alterations in acetylation, methylation, and phosphorylation of histone proteins. We conclude that p65 and STAT1 cooperate to control iNOS gene transcription in response to proinflammatory cytokines by a coactivator exchange mechanism. This increase in transcription is also associated with signal-specific chromatin remodeling that leads to RNA polymerase II recruitment and phosphorylation.

Citing Articles

Spermidine Inhibits M1 Microglia Polarization in a Mouse Model of Parkinson's Disease and BV2 Cells via NF-κB/STAT-1 Pathway.

Shu J, Jiao Y, Wei W, Yan A Brain Behav. 2025; 15(3):e70410.

PMID: 40059454 PMC: 11891262. DOI: 10.1002/brb3.70410.


Pro-Tumor Activity of Endogenous Nitric Oxide in Anti-Tumor Photodynamic Therapy: Recently Recognized Bystander Effects.

Girotti A, Bazak J, Korytowski W Int J Mol Sci. 2023; 24(14).

PMID: 37511317 PMC: 10380283. DOI: 10.3390/ijms241411559.


Recent Advances in Extracellular Vesicles in Amyotrophic Lateral Sclerosis and Emergent Perspectives.

Afonso G, Cavaleiro C, Valero J, Mota S, Ferreiro E Cells. 2023; 12(13).

PMID: 37443797 PMC: 10340215. DOI: 10.3390/cells12131763.


Role of Dietary Polyphenols in the Activity and Expression of Nitric Oxide Synthases: A Review.

Serreli G, Deiana M Antioxidants (Basel). 2023; 12(1).

PMID: 36671009 PMC: 9854440. DOI: 10.3390/antiox12010147.


Protective Effect of Nopal Cactus () Seed Oil against Short-Term Lipopolysaccharides-Induced Inflammation and Peroxisomal Functions Dysregulation in Mouse Brain and Liver.

Tahri-Joutey M, Saih F, El Kebbaj R, Gondcaille C, Vamecq J, Latruffe N Int J Mol Sci. 2022; 23(19).

PMID: 36233157 PMC: 9569537. DOI: 10.3390/ijms231911849.


References
1.
Leung T, Hoffmann A, Baltimore D . One nucleotide in a kappaB site can determine cofactor specificity for NF-kappaB dimers. Cell. 2004; 118(4):453-64. DOI: 10.1016/j.cell.2004.08.007. View

2.
Corbett J, Sweetland M, Wang J, Lancaster Jr J, McDaniel M . Nitric oxide mediates cytokine-induced inhibition of insulin secretion by human islets of Langerhans. Proc Natl Acad Sci U S A. 1993; 90(5):1731-5. PMC: 45953. DOI: 10.1073/pnas.90.5.1731. View

3.
Burke S, Goff M, Updegraff B, Lu D, Brown P, Minkin Jr S . Regulation of the CCL2 gene in pancreatic β-cells by IL-1β and glucocorticoids: role of MKP-1. PLoS One. 2012; 7(10):e46986. PMC: 3467264. DOI: 10.1371/journal.pone.0046986. View

4.
Kunarso G, Chia N, Jeyakani J, Hwang C, Lu X, Chan Y . Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet. 2010; 42(7):631-4. DOI: 10.1038/ng.600. View

5.
LeRoy G, Rickards B, Flint S . The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol Cell. 2008; 30(1):51-60. PMC: 2387119. DOI: 10.1016/j.molcel.2008.01.018. View