» Articles » PMID: 24008998

Some Experiences and Opportunities for Big Data in Translational Research

Overview
Journal Genet Med
Publisher Elsevier
Specialty Genetics
Date 2013 Sep 7
PMID 24008998
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Health care has become increasingly information intensive. The advent of genomic data, integrated into patient care, significantly accelerates the complexity and amount of clinical data. Translational research in the present day increasingly embraces new biomedical discovery in this data-intensive world, thus entering the domain of "big data." The Electronic Medical Records and Genomics consortium has taught us many lessons, while simultaneously advances in commodity computing methods enable the academic community to affordably manage and process big data. Although great promise can emerge from the adoption of big data methods and philosophy, the heterogeneity and complexity of clinical data, in particular, pose additional challenges for big data inferencing and clinical application. However, the ultimate comparability and consistency of heterogeneous clinical information sources can be enhanced by existing and emerging data standards, which promise to bring order to clinical data chaos. Meaningful Use data standards in particular have already simplified the task of identifying clinical phenotyping patterns in electronic health records.

Citing Articles

Paradigm shift required for translational research on the brain.

Yoon J, Lee D, Lee C, Cho E, Lee S, Cazenave-Gassiot A Exp Mol Med. 2024; 56(5):1043-1054.

PMID: 38689090 PMC: 11148129. DOI: 10.1038/s12276-024-01218-x.


Extraction of Active Medications and Adherence Using Natural Language Processing for Glaucoma Patients.

Lin W, Chen J, Kaluzny J, Chen A, Chiang M, Hribar M AMIA Annu Symp Proc. 2022; 2021:773-782.

PMID: 35308943 PMC: 8861739.


ML-MEDIC: A Preliminary Study of an Interactive Visual Analysis Tool Facilitating Clinical Applications of Machine Learning for Precision Medicine.

Stevens L, Kao D, Hall J, Gorg C, Abdo K, Linstead E Appl Sci (Basel). 2021; 10(9).

PMID: 33664984 PMC: 7928533. DOI: 10.3390/app10093309.


Antibiotic-Resistant Septicemia in Pediatric Oncology Patients Associated with Post-Therapeutic Neutropenic Fever.

Vazquez-Lopez R, Rivero Rojas O, Ibarra Moreno A, Urrutia Favila J, Pena Barreto A, Ortega Ortuno G Antibiotics (Basel). 2019; 8(3).

PMID: 31366110 PMC: 6783913. DOI: 10.3390/antibiotics8030106.


Implementing Precision Medicine and Artificial Intelligence in Plastic Surgery: Concepts and Future Prospects.

Kim Y, Kelley B, Nasser J, Chung K Plast Reconstr Surg Glob Open. 2019; 7(3):e2113.

PMID: 31044104 PMC: 6467615. DOI: 10.1097/GOX.0000000000002113.


References
1.
Langmead B, Schatz M, Lin J, Pop M, Salzberg S . Searching for SNPs with cloud computing. Genome Biol. 2009; 10(11):R134. PMC: 3091327. DOI: 10.1186/gb-2009-10-11-r134. View

2.
Abecasis G, Altshuler D, Auton A, Brooks L, Durbin R, Gibbs R . A map of human genome variation from population-scale sequencing. Nature. 2010; 467(7319):1061-73. PMC: 3042601. DOI: 10.1038/nature09534. View

3.
Zuvich R, Armstrong L, Bielinski S, Bradford Y, Carlson C, Crawford D . Pitfalls of merging GWAS data: lessons learned in the eMERGE network and quality control procedures to maintain high data quality. Genet Epidemiol. 2011; 35(8):887-98. PMC: 3592376. DOI: 10.1002/gepi.20639. View

4.
Nelson S, Zeng K, Kilbourne J, Powell T, Moore R . Normalized names for clinical drugs: RxNorm at 6 years. J Am Med Inform Assoc. 2011; 18(4):441-8. PMC: 3128404. DOI: 10.1136/amiajnl-2011-000116. View

5.
Manolio T, Chisholm R, Ozenberger B, Roden D, Williams M, Wilson R . Implementing genomic medicine in the clinic: the future is here. Genet Med. 2013; 15(4):258-67. PMC: 3835144. DOI: 10.1038/gim.2012.157. View