» Articles » PMID: 23973390

In Vitro Hemocompatibility and Vascular Endothelial Cell Functionality on Titania Nanostructures Under Static and Dynamic Conditions for Improved Coronary Stenting Applications

Overview
Journal Acta Biomater
Publisher Elsevier
Date 2013 Aug 27
PMID 23973390
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

The usefulness of nanoscale topography in improving vascular response in vitro was established previously on hydrothermally modified titanium surfaces. To propose this strategy of surface modification for translation onto clinically used metallic stents, it is imperative that the surface should be also hemocompatible: an essential attribute for any blood-contacting device. The present in vitro study focuses on a detailed hemocompatibility evaluation of titania nanostructures created through an alkaline hydrothermal route on metallic Ti stent prototypes. Direct interactions of TiO2 nanocues of various morphologies with whole blood were studied under static conditions as well as using an in vitro circulation model mimicking arterial flow, with respect to a polished Ti control. Nanomodified stent surfaces upon contact with human blood showed negligible hemolysis under constant shear and static conditions. Coagulation profile testing indicated that surface roughness of nanomodified stents induced no alterations in the normal clotting times, with insignificant thrombus formation and minimal inflammatory reaction. Endothelialized nanomodified Ti surfaces were found to inhibit both activation as well as aggregation of platelets compared with the control surface, with the endothelium formed on the nanosurfaces having an increased expression of anti-thrombogenic genes. Such a nanotextured Ti surface, which is anti-thrombogenic and promotes endothelialization, would be a cost-effective alternative to drug-eluting stents or polymer-coated stents for overcoming in-stent restenosis.

Citing Articles

Manufacturing, Processing, and Characterization of Self-Expanding Metallic Stents: A Comprehensive Review.

Vanaei S, Hashemi M, Solouk A, Ilani M, Amili O, Hefzy M Bioengineering (Basel). 2024; 11(10).

PMID: 39451359 PMC: 11505524. DOI: 10.3390/bioengineering11100983.


Flexible multifunctional titania nanotube array platform for biological interfacing.

Hamedani H, Stegall T, Yang Y, Wang H, Menon A, Bhalotia A MRS Bull. 2024; 49(4):299-309.

PMID: 38645611 PMC: 11026245. DOI: 10.1557/s43577-023-00628-y.


Nanotexture and crystal phase regulation for synergistic enhancement in re-endothelialization on medical pure titanium surface.

Zhang J, Ren K, Qiu J, Chen B, Duan W, Liu J Mater Today Bio. 2024; 25:100968.

PMID: 38312801 PMC: 10835003. DOI: 10.1016/j.mtbio.2024.100968.


Stability and Thrombogenicity Analysis of Collagen/Carbon Nanotube Nanocomposite Coatings Using a Reversible Microfluidic Device.

Popovich K, Vagner S, Murashko D, Ten G, Ryabkin D, Savelyev M Membranes (Basel). 2023; 13(4).

PMID: 37103830 PMC: 10144663. DOI: 10.3390/membranes13040403.


Antibacterial and Healing Effect of Chicha Gum Hydrogel () with Nerolidol.

Lima I, Ferreira M, Barros E, Dos Santos Rizzo M, de Araujo Santos J, Ribeiro A Int J Mol Sci. 2023; 24(3).

PMID: 36768534 PMC: 9916798. DOI: 10.3390/ijms24032210.