» Articles » PMID: 23940761

Multiparametric, Longitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke

Overview
Journal PLoS One
Date 2013 Aug 14
PMID 23940761
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

Progress in experimental stroke and translational medicine could be accelerated by high-resolution in vivo imaging of disease progression in the mouse cortex. Here, we introduce optical microscopic methods that monitor brain injury progression using intrinsic optical scattering properties of cortical tissue. A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described. In the acute stages, the spatiotemporal interplay between hemodynamics and cell viability, a key determinant of pathogenesis, was imaged. In acute stroke, microscopic biomarkers for eventual infarction, including capillary non-perfusion, cerebral blood flow deficiency, altered cellular scattering, and impaired autoregulation of cerebral blood flow, were quantified and correlated with histology. Additionally, longitudinal microscopy revealed remodeling and flow recovery after one week of chronic stroke. Intrinsic scattering properties serve as reporters of acute cellular and vascular injury and recovery in experimental stroke. Multi-parametric OCT represents a robust in vivo imaging platform to comprehensively investigate these properties.

Citing Articles

Optical coherence tomography (OCT) and OCT angiography: Technological development and applications in brain science.

Yang L, Chen P, Wen X, Zhao Q Theranostics. 2025; 15(1):122-140.

PMID: 39744229 PMC: 11667229. DOI: 10.7150/thno.97192.


Optical coherence tomography enables longitudinal evaluation of cell graft-directed remodeling in stroke lesions.

Adewumi H, Simkulet M, Kureli G, Giblin J, Lopez A, Erdener S Exp Neurol. 2024; 385:115117.

PMID: 39694221 PMC: 11781960. DOI: 10.1016/j.expneurol.2024.115117.


Quantitative Optical Imaging of Oxygen in Brain Vasculature.

Rathbone E, Fu D J Phys Chem B. 2024; 128(29):6975-6989.

PMID: 38991095 PMC: 11821374. DOI: 10.1021/acs.jpcb.4c01277.


Fluorescent liposomal nanocarriers for targeted drug delivery in ischemic stroke therapy.

Arul M, Alahmadi I, Turro D, Ruikar A, Abdulmalik S, Williams J Biomater Sci. 2023; 11(24):7856-7866.

PMID: 37902365 PMC: 10697427. DOI: 10.1039/d3bm00951c.


Dynamic optical coherence tomography for cell analysis [Invited].

Azzollini S, Monfort T, Thouvenin O, Grieve K Biomed Opt Express. 2023; 14(7):3362-3379.

PMID: 37497511 PMC: 10368035. DOI: 10.1364/BOE.488929.


References
1.
Nishimura N, Schaffer C, Friedman B, Lyden P, Kleinfeld D . Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc Natl Acad Sci U S A. 2006; 104(1):365-70. PMC: 1765467. DOI: 10.1073/pnas.0609551104. View

2.
Liu R, Murphy T . Reversible cyclosporin A-sensitive mitochondrial depolarization occurs within minutes of stroke onset in mouse somatosensory cortex in vivo: a two-photon imaging study. J Biol Chem. 2009; 284(52):36109-36117. PMC: 2794726. DOI: 10.1074/jbc.M109.055301. View

3.
Johnston D, Denizet M, Mostany R, Portera-Cailliau C . Chronic in vivo imaging shows no evidence of dendritic plasticity or functional remapping in the contralesional cortex after stroke. Cereb Cortex. 2012; 23(4):751-62. PMC: 3657384. DOI: 10.1093/cercor/bhs092. View

4.
Shin H, Dunn A, Jones P, Boas D, Moskowitz M, Ayata C . Vasoconstrictive neurovascular coupling during focal ischemic depolarizations. J Cereb Blood Flow Metab. 2005; 26(8):1018-30. DOI: 10.1038/sj.jcbfm.9600252. View

5.
KRETSCHMANN H, Kammradt G, Krauthausen I, Sauer B, Wingert F . Brain growth in man. Bibl Anat. 1986; (28):1-26. View