» Articles » PMID: 23935581

HDDM: Hierarchical Bayesian Estimation of the Drift-Diffusion Model in Python

Overview
Specialty Neurology
Date 2013 Aug 13
PMID 23935581
Citations 364
Authors
Affiliations
Soon will be listed here.
Abstract

The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/

Citing Articles

Transcutaneous Vagus Nerve Stimulation Enhances Probabilistic Learning.

Cakir R, Buyukguduk I, Bilim P, Erdinc A, Veldhuizen M Psychophysiology. 2025; 62(3):e70037.

PMID: 40059064 PMC: 11891121. DOI: 10.1111/psyp.70037.


Cross-modal congruency modulates evidence accumulation, not decision thresholds.

Brozova N, Vollmer L, Kampa B, Kayser C, Fels J Front Neurosci. 2025; 19:1513083.

PMID: 40052091 PMC: 11882578. DOI: 10.3389/fnins.2025.1513083.


The role of human intraparietal sulcus in evidence accumulation revealed by EEG and model-informed fMRI: IPS accumulates evidence during decision-making.

Wongtrakun J, Zhou S, OConnell R, Chong T, Bellgrove M, Coxon J bioRxiv. 2025; .

PMID: 39975060 PMC: 11838566. DOI: 10.1101/2025.02.05.636628.


Hippocampal damage disrupts the latent decision-making processes underlying approach-avoidance conflict processing in humans.

Le Duc W, Butler C, Argyropoulos G, Chu S, Hutcherson C, Ruocco A PLoS Biol. 2025; 23(2):e3003033.

PMID: 39932954 PMC: 11849986. DOI: 10.1371/journal.pbio.3003033.


Risk and Loss Aversion and Attitude to COVID and Vaccines in Anxious Individuals.

Ferrari F, Alexander J, Series P Comput Psychiatr. 2025; 9(1):23-38.

PMID: 39926297 PMC: 11804175. DOI: 10.5334/cpsy.115.


References
1.
Wagenmakers E, Lodewyckx T, Kuriyal H, Grasman R . Bayesian hypothesis testing for psychologists: a tutorial on the Savage-Dickey method. Cogn Psychol. 2010; 60(3):158-89. DOI: 10.1016/j.cogpsych.2009.12.001. View

2.
Plummer M . Penalized loss functions for Bayesian model comparison. Biostatistics. 2008; 9(3):523-39. DOI: 10.1093/biostatistics/kxm049. View

3.
Patil A, Huard D, Fonnesbeck C . PyMC: Bayesian Stochastic Modelling in Python. J Stat Softw. 2011; 35(4):1-81. PMC: 3097064. View

4.
Shiffrin R, Lee M, Kim W, Wagenmakers E . A survey of model evaluation approaches with a tutorial on hierarchical bayesian methods. Cogn Sci. 2011; 32(8):1248-84. DOI: 10.1080/03640210802414826. View

5.
Van Maanen L, Brown S, Eichele T, Wagenmakers E, Ho T, Serences J . Neural correlates of trial-to-trial fluctuations in response caution. J Neurosci. 2011; 31(48):17488-95. PMC: 6623798. DOI: 10.1523/JNEUROSCI.2924-11.2011. View