» Articles » PMID: 23883117

Focused Ultrasonic Propulsion of Kidney Stones: Review and Update of Preclinical Technology

Overview
Journal J Endourol
Publisher Mary Ann Liebert
Date 2013 Jul 26
PMID 23883117
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

A noninvasive tool to reposition kidney stones could have significant impact in the management of stone disease. Our research group has developed a noninvasive transcutaneous ultrasound device. A review and update of the current status of this technology is provided. DISCUSSION OF TECHNOLOGY: Stone propulsion is achieved through short bursts of focused, ultrasonic pulses. The initial system consisted of an eight-element annular array transducer, computer, and separate ultrasound imager. In the current generation, imaging and therapy are completed with one ultrasound system and a commercial probe. This generation allows real-time ultrasound imaging, targeting, and propulsion. Safety and effectiveness for the relocation of calyceal stones have been demonstrated in the porcine model. ROLE IN ENDOUROLOGY: This technology may have applications in repositioning stones as an adjunct to lithotripsy, facilitating clearance of residual fragments after lithotripsy, expelling de novo stones, and potentially repositioning obstructing stones. Human trials are in preparation.

Citing Articles

Focused Ultrasonic Propulsion of Kidney Stones.

Sorensen M, Bailey M, Hsi R, Cunitz B, Simon J, Wang Y J Endourol B Videourol. 2020; 27(6).

PMID: 32292639 PMC: 6964236. DOI: 10.1089/vid.2013.0057.


The Impact of Dust and Confinement on Fragmentation of Kidney Stones by Shockwave Lithotripsy in Tissue Phantoms.

Randad A, Ahn J, Bailey M, Kreider W, Harper J, Sorensen M J Endourol. 2019; 33(5):400-406.

PMID: 30595048 PMC: 6533787. DOI: 10.1089/end.2018.0516.


Combined Burst Wave Lithotripsy and Ultrasonic Propulsion for Improved Urinary Stone Fragmentation.

Zwaschka T, Ahn J, Cunitz B, Bailey M, Dunmire B, Sorensen M J Endourol. 2018; 32(4):344-349.

PMID: 29433329 PMC: 5909083. DOI: 10.1089/end.2017.0675.


Characterizing the Acoustic Output of an Ultrasonic Propulsion Device for Urinary Stones.

Cunitz B, Dunmire B, Bailey M IEEE Trans Ultrason Ferroelectr Freq Control. 2017; 64(12):1818-1827.

PMID: 28981413 PMC: 5733808. DOI: 10.1109/TUFFC.2017.2758647.


Effect of Stone Size and Composition on Ultrasonic Propulsion Ex Vivo.

Janssen K, Brand T, Bailey M, Cunitz B, Harper J, Sorensen M Urology. 2017; 111:225-229.

PMID: 28964820 PMC: 5875927. DOI: 10.1016/j.urology.2017.09.013.


References
1.
El-Nahas A, Ibrahim H, Youssef R, Sheir K . Flexible ureterorenoscopy versus extracorporeal shock wave lithotripsy for treatment of lower pole stones of 10-20 mm. BJU Int. 2012; 110(6):898-902. DOI: 10.1111/j.1464-410X.2012.10961.x. View

2.
Ferreira de Souza L, Goldman S, Faintuch S, Faria J, Bekhor D, Tiferes D . Comparison between ultrasound and noncontrast helical computed tomography for identification of acute ureterolithiasis in a teaching hospital setting. Sao Paulo Med J. 2007; 125(2):102-7. PMC: 11014692. DOI: 10.1590/s1516-31802007000200007. View

3.
Skolarikos A, Papatsoris A . Diagnosis and management of postpercutaneous nephrolithotomy residual stone fragments. J Endourol. 2009; 23(10):1751-5. DOI: 10.1089/end.2009.1546. View

4.
Fernandez R, Tan Y, Kaberle W, Best S, Olweny E, Pearle M . Determining a performance envelope for capture of kidney stones functionalized with superparamagnetic microparticles. J Endourol. 2012; 26(9):1227-30. DOI: 10.1089/end.2011.0598. View

5.
Bailey M, Wang Y, Simon J, Cunitz B, Harper J, Hsi R . 1pPAb5. Acoustic radiation force to reposition kidney stones. Proc Meet Acoust. 2015; 19. PMC: 4509680. DOI: 10.1121/1.4799599. View