» Articles » PMID: 23843721

Recent Progress in Mouse Models for Tumor Suppressor Genes and Its Implications in Human Cancer

Overview
Publisher Sage Publications
Specialty Oncology
Date 2013 Jul 12
PMID 23843721
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Gain-of-function mutations in oncogenes and loss-of-function mutations in tumor suppressor genes (TSG) lead to cancer. In most human cancers, these mutations occur in somatic tissues. However, hereditary forms of cancer exist for which individuals are heterozygous for a germline mutation in a TSG locus at birth. The second allele is frequently inactivated by gene deletion, point mutation, or promoter methylation in classical TSGs that meet Knudson's two-hit hypothesis. Conversely, the second allele remains as wild-type, even in tumors in which the gene is haplo-insufficient for tumor suppression. This article highlights the importance of PTEN, APC, and other tumor suppressors for counteracting aberrant PI3K, β-catenin, and other oncogenic signaling pathways. We discuss the use of gene-engineered mouse models (GEMM) of human cancer focusing on Pten and Apc knockout mice that recapitulate key genetic events involved in initiation and progression of human neoplasia. Finally, the therapeutic potential of targeting these tumor suppressor and oncogene signaling networks is discussed.

Citing Articles

Diverse landscape of genetically engineered mouse models: Genomic and molecular insights into prostate cancer.

Kaushal J, Takkar S, Batra S, Siddiqui J Cancer Lett. 2024; 593:216954.

PMID: 38735382 PMC: 11799897. DOI: 10.1016/j.canlet.2024.216954.


PTEN Mouse Models of Cancer Initiation and Progression.

Lee Y, Pandolfi P Cold Spring Harb Perspect Med. 2019; 10(2).

PMID: 31570383 PMC: 6996448. DOI: 10.1101/cshperspect.a037283.


Methylation and PTEN activation in dental pulp mesenchymal stem cells promotes osteogenesis and reduces oncogenesis.

Shen W, Lai Y, Li L, Liao K, Lai H, Kao S Nat Commun. 2019; 10(1):2226.

PMID: 31110221 PMC: 6527698. DOI: 10.1038/s41467-019-10197-x.


c-MYB and DMTF1 in Cancer.

Fry E, Inoue K Cancer Invest. 2019; 37(1):46-65.

PMID: 30599775 PMC: 6431554. DOI: 10.1080/07357907.2018.1550090.


Translocations involving ETS family proteins in human cancer.

Fry E, Mallakin A, Inoue K Integr Cancer Sci Ther. 2018; 5(4).

PMID: 30542624 PMC: 6287620. DOI: 10.15761/ICST.1000281.


References
1.
Suzuki A, de la Pompa J, Stambolic V, Elia A, Sasaki T, del Barco Barrantes I . High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol. 1998; 8(21):1169-78. DOI: 10.1016/s0960-9822(07)00488-5. View

2.
Stambolic V, Suzuki A, de la Pompa J, Brothers G, Mirtsos C, Sasaki T . Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998; 95(1):29-39. DOI: 10.1016/s0092-8674(00)81780-8. View

3.
BELL D, Varley J, Szydlo T, Kang D, Wahrer D, Shannon K . Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science. 2000; 286(5449):2528-31. DOI: 10.1126/science.286.5449.2528. View

4.
Kim M, Cardiff R, Desai N, Banach-Petrosky W, Parsons R, Shen M . Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci U S A. 2002; 99(5):2884-9. PMC: 122442. DOI: 10.1073/pnas.042688999. View

5.
Tay Y, Kats L, Salmena L, Weiss D, Tan S, Ala U . Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell. 2011; 147(2):344-57. PMC: 3235920. DOI: 10.1016/j.cell.2011.09.029. View