» Articles » PMID: 23839219

H7N9 Avian Influenza A Virus and the Perpetual Challenge of Potential Human Pandemicity

Overview
Journal mBio
Specialty Microbiology
Date 2013 Jul 11
PMID 23839219
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

ABSTRACT The ongoing H7N9 influenza epizootic in China once again presents us questions about the origin of pandemics and how to recognize them in early stages of development. Over the past ~135 years, H7 influenza viruses have neither caused pandemics nor been recognized as having undergone human adaptation. Yet several unusual properties of these viruses, including their poultry epizootic potential, mammalian adaptation, and atypical clinical syndromes in rarely infected humans, suggest that they may be different from other avian influenza viruses, thus questioning any assurance that the likelihood of human adaptation is low. At the same time, the H7N9 epizootic provides an opportunity to learn more about the mammalian/human adaptational capabilities of avian influenza viruses and challenges us to integrate virologic and public health research and surveillance at the animal-human interface.

Citing Articles

Structural basis of different neutralization capabilities of monoclonal antibodies against H7N9 virus.

Zhao B, Sun Z, Wang S, Shi Z, Jiang Y, Wang X J Virol. 2024; 99(1):e0140024.

PMID: 39704525 PMC: 11784312. DOI: 10.1128/jvi.01400-24.


The host tropism of current zoonotic H7N9 viruses depends mainly on an acid-labile hemagglutinin with a single amino acid mutation in the stalk region.

Daidoji T, Sadakane H, Garan K, Kawashita N, Arai Y, Watanabe Y PLoS Pathog. 2024; 20(10):e1012427.

PMID: 39436936 PMC: 11495601. DOI: 10.1371/journal.ppat.1012427.


Characterization of Avian Influenza Viruses Detected in Kenyan Live Bird Markets and Wild Bird Habitats Reveal Genetically Diverse Subtypes and High Proportion of A(H9N2), 2018-2020.

Munyua P, Osoro E, Jones J, Njogu G, Yang G, Hunsperger E Viruses. 2024; 16(9).

PMID: 39339892 PMC: 11436075. DOI: 10.3390/v16091417.


The influenza virus PB2 protein evades antiviral innate immunity by inhibiting JAK1/STAT signalling.

Yang H, Dong Y, Bian Y, Xu N, Wu Y, Yang F Nat Commun. 2022; 13(1):6288.

PMID: 36271046 PMC: 9586965. DOI: 10.1038/s41467-022-33909-2.


Unique structural solution from a V3-30 antibody targeting the hemagglutinin stem of influenza A viruses.

Harshbarger W, Deming D, Lockbaum G, Attatippaholkun N, Kamkaew M, Hou S Nat Commun. 2021; 12(1):559.

PMID: 33495478 PMC: 7835374. DOI: 10.1038/s41467-020-20879-6.


References
1.
Parrish C, Holmes E, Morens D, Park E, Burke D, Calisher C . Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev. 2008; 72(3):457-70. PMC: 2546865. DOI: 10.1128/MMBR.00004-08. View

2.
Munster V, Baas C, Lexmond P, Waldenstrom J, Wallensten A, Fransson T . Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathog. 2007; 3(5):e61. PMC: 1876497. DOI: 10.1371/journal.ppat.0030061. View

3.
Pasick J, Berhane Y, Hooper-McGrevy K . Avian influenza: the Canadian experience. Rev Sci Tech. 2009; 28(1):349-58. DOI: 10.20506/rst.28.1.1875. View

4.
Koopmans M, Wilbrink B, Conyn M, Natrop G, van der Nat H, Vennema H . Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet. 2004; 363(9409):587-93. DOI: 10.1016/S0140-6736(04)15589-X. View

5.
Belser J, Rota P, Tumpey T . Ocular tropism of respiratory viruses. Microbiol Mol Biol Rev. 2013; 77(1):144-56. PMC: 3591987. DOI: 10.1128/MMBR.00058-12. View