» Articles » PMID: 23836175

In Vivo Studies Suggest That Induction of VanS-dependent Vancomycin Resistance Requires Binding of the Drug to D-Ala-D-Ala Termini in the Peptidoglycan Cell Wall

Overview
Specialty Pharmacology
Date 2013 Jul 10
PMID 23836175
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

VanRS two-component regulatory systems are key elements required for the transcriptional activation of inducible vancomycin resistance genes in bacteria, but the precise nature of the ligand signal that activates these systems has remained undefined. Using the resistance system in Streptomyces coelicolor as a model, we have undertaken a series of in vivo studies which indicate that the VanS sensor kinase in VanB-type resistance systems is activated by vancomycin in complex with the d-alanyl-d-alanine (d-Ala-d-Ala) termini of cell wall peptidoglycan (PG) precursors. Complementation of an essential d-Ala-d-Ala ligase activity by constitutive expression of vanA encoding a bifunctional d-Ala-d-Ala and d-alanyl-d-lactate (d-Ala-d-Lac) ligase activity allowed construction of strains that synthesized variable amounts of PG precursors containing d-Ala-d-Ala. Assays quantifying the expression of genes under VanRS control showed that the response to vancomycin in these strains correlated with the abundance of d-Ala-d-Ala-containing PG precursors; strains producing a lower proportion of PG precursors terminating in d-Ala-d-Ala consistently exhibited a lower response to vancomycin. Pretreatment of wild-type cells with vancomycin or teicoplanin to saturate and mask the d-Ala-d-Ala binding sites in nascent PG also blocked the transcriptional response to subsequent vancomycin exposure, and desleucyl vancomycin, a vancomycin analogue incapable of interacting with d-Ala-d-Ala residues, failed to induce van gene expression. Activation of resistance by a vancomycin-d-Ala-d-Ala PG complex predicts a limit to the proportion of PG that can be derived from precursors terminating in d-Ala-d-Lac, a restriction also enforced by the bifunctional activity of the VanA ligase.

Citing Articles

Insights into Kinases of ESKAPE Pathogens for Therapeutic Interventions.

Mody D, Joshi P, Antil M, Gupta R, Gupta V Cardiovasc Hematol Agents Med Chem. 2024; 22(3):276-297.

PMID: 39403051 DOI: 10.2174/0118715257267497231128093529.


Heterologous Expression Reveals Ancient Properties of Tei3—A VanS Ortholog from the Teicoplanin Producer Actinoplanes teichomyceticus.

Yushchuk O, Zhukrovska K, Ostash B, Fedorenko V, Marinelli F Int J Mol Sci. 2022; 23(24).

PMID: 36555354 PMC: 9779433. DOI: 10.3390/ijms232415713.


Two-Component Systems of : An Intricate Network to Be Unraveled.

Sanchez de la Nieta R, Santamaria R, Diaz M Int J Mol Sci. 2022; 23(23).

PMID: 36499414 PMC: 9739842. DOI: 10.3390/ijms232315085.


VanG- and D-Ala-D-Ser-dependent peptidoglycan synthesis and vancomycin resistance in Clostridioides difficile.

Belitsky B Mol Microbiol. 2022; 118(5):526-540.

PMID: 36065735 PMC: 9671823. DOI: 10.1111/mmi.14980.


Regulation of Resistance in Vancomycin-Resistant Enterococci: The VanRS Two-Component System.

Guffey A, Loll P Microorganisms. 2021; 9(10).

PMID: 34683347 PMC: 8541618. DOI: 10.3390/microorganisms9102026.


References
1.
Allen N, Hobbs Jr J . Induction of vancomycin resistance in Enterococcus faecium by non-glycopeptide antibiotics. FEMS Microbiol Lett. 1995; 132(1-2):107-14. DOI: 10.1111/j.1574-6968.1995.tb07819.x. View

2.
Hesketh A, Kock H, Mootien S, Bibb M . The role of absC, a novel regulatory gene for secondary metabolism, in zinc-dependent antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol. 2009; 74(6):1427-44. DOI: 10.1111/j.1365-2958.2009.06941.x. View

3.
Arthur M, Depardieu F, Courvalin P . Regulated interactions between partner and non-partner sensors and response regulators that control glycopeptide resistance gene expression in enterococci. Microbiology (Reading). 1999; 145 ( Pt 8):1849-1858. DOI: 10.1099/13500872-145-8-1849. View

4.
Baptista M, Depardieu F, Courvalin P, Arthur M . Specificity of induction of glycopeptide resistance genes in Enterococcus faecalis. Antimicrob Agents Chemother. 1996; 40(10):2291-5. PMC: 163522. DOI: 10.1128/AAC.40.10.2291. View

5.
Paget M, Chamberlin L, Atrih A, Foster S, Buttner M . Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol. 1998; 181(1):204-11. PMC: 103550. DOI: 10.1128/JB.181.1.204-211.1999. View