» Articles » PMID: 23822503

Context-dependent Transcriptional Interpretation of Mitogen Activated Protein Kinase Signaling in the Drosophila Embryo

Overview
Journal Chaos
Specialty Science
Date 2013 Jul 5
PMID 23822503
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Terminal regions of the Drosophila embryo are patterned by the localized activation of Mitogen Activated Protein Kinase (MAPK), which induces zygotic genes through relief of their repression by transcriptional repressor Capicua. The levels of MAPK activation at the anterior and posterior termini are close to each other, but the expression patterns of MAPK-target genes, such as zerknüllt (zen) and tailless (tll), display strong anterior-posterior (AP) asymmetry. This region-specific response to MAPK activation provides a clear example of context-dependent interpretation of inductive signaling, a common developmental effect that remains poorly understood. In the past, the AP asymmetry of zen expression was attributed to a mechanism that depends on MAPK substrate competition. We present data suggesting that the asymmetric expression of tll is generated by a different mechanism, based on feedforward control and multiple enhancers of the tll gene. A simple mathematical model of this mechanism correctly predicts how the wild-type expression pattern of tll changes in mutants affecting the anterior, dorsoventral, and terminal patterning systems and some of their direct targets.

Citing Articles

Dynamics of an incoherent feedforward loop drive ERK-dependent pattern formation in the early Drosophila embryo.

Ho E, Oatman H, McFann S, Yang L, Johnson H, Shvartsman S Development. 2023; 150(17).

PMID: 37602510 PMC: 10482391. DOI: 10.1242/dev.201818.


Molecular mechanisms underlying cellular effects of human MEK1 mutations.

Marmion R, Yang L, Goyal Y, Jindal G, Wetzel J, Singh M Mol Biol Cell. 2021; 32(9):974-983.

PMID: 33476180 PMC: 8108529. DOI: 10.1091/mbc.E20-10-0625.


Metabolic Regulation of Developmental Cell Cycles and Zygotic Transcription.

Djabrayan N, Smits C, Krajnc M, Stern T, Yamada S, Lemon W Curr Biol. 2019; 29(7):1193-1198.e5.

PMID: 30880009 PMC: 6501590. DOI: 10.1016/j.cub.2019.02.028.


A quantitative model of developmental RTK signaling.

Goyal Y, Schupbach T, Shvartsman S Dev Biol. 2018; 442(1):80-86.

PMID: 30026122 PMC: 6501586. DOI: 10.1016/j.ydbio.2018.07.012.


Broadly expressed repressors integrate patterning across orthogonal axes in embryos.

Koromila T, Stathopoulos A Proc Natl Acad Sci U S A. 2017; 114(31):8295-8300.

PMID: 28720706 PMC: 5547611. DOI: 10.1073/pnas.1703001114.


References
1.
Driever W, Nusslein-Volhard C . The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell. 1988; 54(1):95-104. DOI: 10.1016/0092-8674(88)90183-3. View

2.
Alon U . Network motifs: theory and experimental approaches. Nat Rev Genet. 2007; 8(6):450-61. DOI: 10.1038/nrg2102. View

3.
Ajuria L, Nieva C, Winkler C, Kuo D, Samper N, Andreu M . Capicua DNA-binding sites are general response elements for RTK signaling in Drosophila. Development. 2011; 138(5):915-24. PMC: 3035094. DOI: 10.1242/dev.057729. View

4.
Ochoa-Espinosa A, Yucel G, Kaplan L, Pare A, Pura N, Oberstein A . The role of binding site cluster strength in Bicoid-dependent patterning in Drosophila. Proc Natl Acad Sci U S A. 2005; 102(14):4960-5. PMC: 555997. DOI: 10.1073/pnas.0500373102. View

5.
Perkins T, Jaeger J, Reinitz J, Glass L . Reverse engineering the gap gene network of Drosophila melanogaster. PLoS Comput Biol. 2006; 2(5):e51. PMC: 1463021. DOI: 10.1371/journal.pcbi.0020051. View